Rear-Facing Reclined Testing
Sled Buck Design & ATD Tests

Alena Hagedorn, TRC Inc.

Automated Vehicle Occupant Safety Workshop
11. 27. 2018
AGENDA

11. 27. 2018

1. Sled Buck Design Evolution
2. Sled Tests with Instrumented ATDs
3. Plans for PMHS Sled Tests
A rear impact sled buck design was fabricated and tested for durability and feasibility using ballast dummies.
Sled Buck Design

- 2 occupant design

- Adjustable configurations
 - Recline angles
 - Seatback rotation limits
 - Loading directions
 - Various seats
 - Integrated or standard belts
Seat Selection

Honda Odyssey

- Integrated seatbelt
- 2nd row seating
- Readily available
- Used throughout test series
Seatback Support Bracket

- Intended to create “fixed” scenario and/or limit seatback rotation
- Adjustable to align with seatback angle
Sled Buck Shakedown Tests

Ballast dummies used to check durability and feasibility of sled buck

25°/ 45° recline free back
25°/ 45° recline fixed back
25°/ 45° recline with 20° allowable rotation
Test Pulses

- **24 kph**
 - Consistent with previous low/moderate speed rear impact testing

- **56 kph avg. NCAP pulse**
Sled Buck Issues

Solution

• Eliminate free back configuration from future tests for better repeatability
Sled Buck Issues

- Seatback support bracket height allows seatback bending
- Rotation of the bracket during seatback contact

25 Deg Recline with 20 Deg Allowable Seatback Rotation

45 Deg Recline with No Allowable Seatback Rotation
Sled Buck Issues

- Solutions

• Extended seatback support bracket height to encompass seatback

• Additional reinforcement to center to prevent bracket rotation
Sled Buck Issues
- Solutions

• Increase height of seatback support bracket to cover entire seatback frame
Sled Tests with Instrumented ATDs

Two sled test series with THOR-50M and HIII-50th performed at 24 kph and 56 kph
Instrumented ATD Sled Tests

25°/ 45° recline fixed back
25°/ 45° recline with 20° allowable rotation
Addition of Seat Anchor Load Cells

- Load cells added to the anchor points to measure reaction forces
- For model validation
56 kph Tests: THOR-50M

25 Deg Recline

45 Deg Recline

Fixed Seatback

Seatback Allowed to Rotate 20 Deg

This test not conducted due to ATD instrumentation issues
Sled Buck Issues

• Head restraint bent, broke, or pulled out due to head interaction

• Undesirable for repeatability & model validation

• SOLUTION: Fix both head restraint and seatback
ATD Issues

- Pinched cables, data channel loss
- Associated with cable bundle interacting with seatback
- **SOLUTION:** Reroute cables for next series
ATD Issues

• HYIII head far from head restraint in 45° recline

• THOR lumbar spine set to erect to better fit 45° recline
Instrumented ATD Series: Findings

• Fix all seatbacks for next series
 • No allowable seatback rotation
 • Pulse, recline angle, and ATD only variables for repeatability

• Cable rerouting needed to limit cable bundle interacting with seatback

• Head restraint needs to be supported
Instrumented ATD Sled Tests – Round 2

25° / 45° recline fixed back
New Head Restraint Support

• Fully supports head restraint

• Posts have set screw “clamps” to keep headrest from being pulled out
Reroute Cables

- Reconfigured to prevent compression of cables on the back
56 kph: THOR-50M & HIII-50th

25 Deg Recline

45 Deg Recline
Rerouting instrumentation cables was effective.

Fixed seatback + fixed head restraint appears to exhibit a repeatable configuration.
- Allows for PMHS vs. ATD comparison of seatback/head restraint interaction.
Seatback/Head Restraint Loads

- 8 load cells per seatback:
 - 1 on head restraint
 - 1 to measure head restraint post load
 - 6 to measure seatback loads (in groups of 2)
Rear-Facing Reclined Testing
PMHS Instrumentation Plan

Yun-Seok Kang, PhD

Automated Vehicle Occupant Safety Workshop
11.27.2018
Preliminary Results
THOR-50M 56kph

This chart is NOT intended to assess injury but to use as a guide for PMHS instrumentation

THOR Injury Criteria Report
NHTSA (unpublished)
Preliminary Results
THOR-50M 56kph

THOR Injury Criteria Report
NHTSA (unpublished)
Head, neck, spine and pelvis kinematics

THOR Injury Criteria Report
NHTSA (unpublished)
THOR-50M BioRID II HIII-50th PMHS

Head, Neck, Spine, and Pelvis

ATD vs. PMHS

Kang et al., 2017

Coplanar 6a°
Head, Neck, Spine, and Pelvis

ATD vs. PMHS

![THOR-50M](image1)

![BioRID II](image2)

![HIII-50th](image3)

![PMHS](image4)

<table>
<thead>
<tr>
<th></th>
<th>THOR-50M</th>
<th>BioRID II</th>
<th>HIII-50th</th>
<th>PMHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2/4/6</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T12</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Green** indicates coplanar 6 axes.
- **3aω** indicates specific axes.
- **ARS** indicates regional axes of significance.
Head, Neck, Spine, and Pelvis

ATD vs. PMHS

THOR-50M	**BioRID II**	**HIII-50th**	**PMHS**
Head | ![THOR-50M](image1) | ![BioRID II](image2) | ![HIII-50th](image3) | ![PMHS](image4)
C2/4/6 | N/A | ![HIII-50th](image3) | ![PMHS](image4) | ![PMHS](image4)
T1 | ![THOR-50M](image1) | ![THOR-50M](image1) | ![PMHS](image4) | ![PMHS](image4)
T4 | N/A | N/A | ![PMHS](image4) | ![PMHS](image4)
T8 | N/A | ![PMHS](image4) | ![PMHS](image4) | ![PMHS](image4)
T12 | ![THOR-50M](image1) | ![THOR-50M](image1) | ![PMHS](image4) | ![PMHS](image4)
L1 | N/A | N/A | ![PMHS](image4) | ![PMHS](image4)
Pelvis | ![THOR-50M](image1) | ![BioRID II](image2) | ![HIII-50th](image3) | ![PMHS](image4)

- Green: Coplanar 6aω
- Red: 3aω
- Blue: ARS
- Green with a yellow dot: Biaxial accelerometers (x, z) and one ARS (y)
Head, Neck, Spine, and Pelvis

ATD vs. PMHS

<table>
<thead>
<tr>
<th></th>
<th>THOR-50M</th>
<th>BioRID II</th>
<th>HIII-50th</th>
<th>PMHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2/4/6</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Coplanar 6a_ω**
- **3a_ω**
- **ARS**
- **Biaxial accelerometers (x, z) and one ARS (y)**
- **Biaxial accelerometers (x, z)**

Biaxial accelerometers (x, z)
Head, Neck, Spine, and Pelvis

ATD vs. PMHS

<table>
<thead>
<tr>
<th></th>
<th>THOR-50M</th>
<th>BioRID II</th>
<th>HIII-50th</th>
<th>PMHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2/4/6</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T12</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Pelvis

- Coplanar 6\(\omega\)
- 3\(\omega\)
- ARS
- Biaxial accelerometers (x, z) and one ARS (y)
- Biaxial accelerometers (x, z)
Head, Neck, Spine, and Pelvis
ATD vs. PMHS

<table>
<thead>
<tr>
<th></th>
<th>THOR-50M</th>
<th>BioRID II</th>
<th>HIII-50th</th>
<th>PMHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2/4/6</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T12</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

- ▶️: Coplanar 6a₀
- 3a₀
- ARS
- Biaxial accelerometers (x, z) and one ARS (y)
- Biaxial accelerometers (x, z)
Instrumentation Plan

Chest deflection

- 25 deg recline
- 45 deg recline

THOR Injury Criteria Report
NHTSA (unpublished)
Thorax
Chest Deflection

45.0

24.2 mm @ 45.00 ms

50.0

45.7 mm @ 50.10 ms
Thorax
Instrumentation

: Chest band
Thorax
Instrumentation

- Chest band
- Strain Gage

Rib 3 - 9

Rib 3 - 10
Instrumentation Plan

Femur and tibia

![Graph showing normalized forces for different conditions](image)

- The graph compares forces under 25 deg recline (red bars) and 45 deg recline (gray bars).

- The THOR Injury Criteria Report by NHTSA (unpublished) is referenced.
Seat Pan Interaction with Tibia
Femur and Tibia
Instrumentation

\[3a_\omega \]

Strain Gage