

Rear-Facing Reclined Testing Sled Buck Design & ATD Tests

Alena Hagedorn, TRC Inc.

Automated Vehicle Occupant Safety Workshop 11. 27. 2018

AGENDA

11. 27. 2018

Sled Buck Design Evolution

2

3

Sled Tests with Instrumented ATDs

Plans for PMHS Sled Tests

Sled Buck Design Evolution

A rear impact sled buck design was fabricated and tested for durability and feasibility using ballast dummies

Sled Buck Design

- 2 occupant design
- Adjustable configurations
 - Recline angles
 - Seatback rotation limits
 - Loading directions
 - Various seats
 - Integrated or standard belts

Seat Selection

Honda Odyssey

- Integrated seatbelt
- 2nd row seating
- Readily available
- Used throughout test series

Seatback Support Bracket

- Intended to create "fixed" scenario and/or limit seatback rotation
- Adjustable to align with seatback angle

Sled Buck Shakedown Tests

Ballast dummies used to check durability and feasibility of sled buck

25°/ 45° recline free back 25°/ 45° recline fixed back 25°/ 45° recline with 20° allowable rotation

Test Pulses

• 24 kph

 Consistent with previous low/moderate speed rear impact testing

56 kph avg.
 NCAP pulse

Sled Buck Issues Solution

 Eliminate free back configuration from future tests for better repeatability

Sled Buck Issues

Seatback support bracket height allows seatback bending

Rotation of the bracket during seatback contact

25 Deg Recline with 20 Deg Allowable Seatback Rotation

45 Deg Recline with No Allowable Seatback Rotation

Sled Buck Issues - Solutions

 Extended seatback support bracket height to encompass seatback

 Additional reinforcement to center to prevent bracket rotation

Sled Buck Issues - Solutions

Increase height of seatback support bracket to cover entire seatback frame

25 Deg Recline with 20 Deg Allowable Seatback Rotation

45 Deg Recline with No Allowable Seatback Rotation

Sled Tests with Instrumented ATDs

Two sled test series with THOR-50M and HIII-50th performed at 24 kph and 56 kph Instrumented ATD Sled Tests

25°/45° recline fixed back 25°/45° recline with 20° allowable rotation

Addition of Seat Anchor Load Cells

Load cells added to the anchor points to measure reaction forces
For model validation

56 kph Tests: THOR-50M

Sled Buck Issues

- Head restraint bent, broke, or pulled out due to head interaction
- Undesirable for repeatability & model validation
- SOLUTION: Fix both head restraint and seatback

ATD Issues

- Pinched cables, data channel loss
- Associated with cable bundle interacting with seatback
- SOLUTION: Reroute cables for next series

ATD Issues

 HYIII head far from head restraint in 45° recline

 THOR lumbar spine set to erect to better fit 45° recline

Instrumented ATD Series: Findings

- Fix all seatbacks for next series
 - No allowable seatback rotation
 - Pulse, recline angle, and ATD only variables for repeatability
- Cable rerouting needed to limit cable bundle interacting with seatback
- Head restraint needs to be supported

Instrumented ATD Sled Tests – Round 2

25°/45° recline fixed back

New Head Restraint Support

- Fully supports head restraint
- Posts have set screw "clamps" to keep headrest from being pulled out

Reroute Cables

• Reconfigured to prevent compression of cables on the back

THOR-50M

56 kph: THOR-50M & HIII-50th

Instrumented ATD Tests Round 2: Findings

- Rerouting instrumentation cables was effective
- Fixed seatback + fixed head restraint appears to exhibit a repeatable configuration
 - Allows for PMHS vs. ATD comparison of seatback/head restraint interaction

THOR-50M

Seatback/Head Restraint Loads

- 8 load cells per seatback:
 - 1 on head restraint
 - 1 to measure head restraint post load
 - 6 to measure seatback loads (in groups of 2)

Rear-Facing Reclined Testing PMHS Instrumentation Plan

Yun-Seok Kang, PhD

Automated Vehicle Occupant Safety Workshop 11.27.2018

INJURY BIOMECHANICS R E S E A R C H C E N T E R

THE OHIO STATE UNIVERSITY

THOR-50M Qualitative Analysis 25° Recline

THOR-50M Qualitative Analysis 45° Recline

Preliminary Results THOR-50M 56kph

This chart is NOT intended to assess injury but to use as a guide for PMHS instrumentation

Preliminary Results THOR-50M 56kph

Instrumentation Plan

Head, neck, spine and pelvis kinematics

<BioRID II>

<HIII-50th>

	THOR-50M	BioRID II	HIII-50th	PMHS
Head				
C2/4/6	N/A	•	N/A	•
T1			N/A	
Τ4	N/A	N/A		
Т8	N/A		N/A	
T12		N/A	N/A	
L1	N/A		N/A	N/A
Pelvis				

<THOR-50M>

<HIII-50th>

PMHS

•

(@) 5197

<BioRID II>

THOR-50M

N/A

BioRID II

igodol

N/A

N/A

HIII-50th

N/A

Head

C2/4/6

L1

<THOR-50M>

Coplanar 6aω

3aω

ARS

<HIII-50th>

<PMHS>

• Biaxial accelerometers (x, z) and one ARS (y)

<BioRID II>

<THOR-50M>

	THOR-50M	BioRID II	HIII-50th	PMHS
Head				
C2/4/6	N/A	•	N/A	•
T1	•	•	N/A	•
T4	N/A	N/A	•	•
Т8	N/A		N/A	
T12		N/A	N/A	
L1	N/A		N/A	N/A
Pelvis				

- Coplanar 6aω
- 3aω
- ARS
- Biaxial accelerometers (x, z) and one ARS (y)

<HIII-50th>

<PMHS>

<BioRID II>

<THOR-50M>

•	THOR-50M	BioRID II	HIII-50th	PMHS
Head				
C2/4/6	N/A	٠	N/A	•
T1	•	٠	N/A	•
T4	N/A	N/A	•	•
Т8	N/A	0	N/A	•
T12		N/A	N/A	•
L1	N/A		N/A	N/A
Pelvis				

- 3aω
- ARS
- Biaxial accelerometers (x, z) and one ARS (y)
- Biaxial accelerometers (x, z)

<HIII-50th>

PMHS

•

•

•

•

N/A

<BioRID II>

<THOR-50M>

- Coplanar 6aω
- 3aω
- ARS
- Biaxial accelerometers (x, z) and one ARS (y)
- Biaxial accelerometers (x, z)

<HIII-50th>

<BioRID II>

<THOR-50M>

••	THOR-50M	BioRID II	HIII-50th	PMHS
Head		-		
C2/4/6	N/A	•	N/A	•
T1	•	•	N/A	•
T4	N/A	N/A	•	•
Т8	N/A	0	N/A	•
T12	•	N/A	N/A	•
L1	N/A	0	N/A	N/A
Pelvis	•	•	•	•••

Coplanar 6aω

- 3aω
- ARS
- Biaxial accelerometers (x, z) and one ARS (y)
- Biaxial accelerometers (x, z)

Instrumentation Plan

THOR Injury Criteria Report NHTSA (unpublished)

Thorax Chest Deflection

Lateral-Medial Position (mm)

Thorax Instrumentation

: Chest band

Thorax Instrumentation

- : Chest band
- : Strain Gage

Instrumentation Plan

Femur and tibia

Seat Pan Interaction with Tibia

Femur and Tibia Instrumentation

