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Proactive ergonomic analysis of occupational tasks using digital human figure models requires accurate 
prediction of worker postures. A wide range of methods have been proposed and used, including posture 
libraries, statistical methods including regression, and optimization approaches that incorporate hypothesized 
criteria such as strength maximization. A common challenge in the implementation of any method is ensuring 
that the resulting postures are consistent with the kinematic linkage of the figure model, the boundary 
constraints are satisfied, including those relevant to the task, and that the figure remains in balance after 
taking into account external forces. Neural network methods have been applied to human posture prediction 
for more than 25 years, but successful implementation for human posture prediction requires careful 
consideration of the relevant constraints. This paper describes the implementation of DNN methods within 
the Human Motion Simulation Framework, which provides a hierarchical structure for posture and motion 
prediction applicable to any human figure model.
 
 

INTRODUCTION 
 

Posture prediction for ergonomics analysis using human 
figure models has been a topic of research for several decades 
(Chaffin 2001, Duffy 2013). A wide range of methods have 
been proposed, including posture libraries (Park et al. 2005), 
regression and other statistical methods (Faraway and Reed 
2007) and optimization based on hypothesized biomechanical 
criteria (Yang et al. 2011). That none of these methods has 
become ubiquitous in ergonomics analysis highlights the fact 
that all are substantially limited in generalizability. Efforts at 
implementation also uncover difficult issues that may not be 
immediately apparent during the original development of the 
methods. 
 

In addition to having documented quantitative 
performance relative to human subject data, an accurate 
method also must: 
 

• produce results that are consistent with human figure 
model linkages scaled over the wide range of human 
body dimension variability, 

 
• comply with the boundary constraints, such as the feet 

on the floor, the hand(s) on the task targets, and body 
bracing on external surfaces, 

 
• not result in interpenetration of any obstacles, while at 

the same time taking advantage of bracing opportunities 
where appropriate, and 

 
• remain in balance while taking into account any 

external forces, for example those associated with task 
exertions.  

 
As a consequence of these challenges, all current tools use 

hybrid approaches that combine aspects of kinematic 
optimization (including data-guided inverse kinematics), 
biomechanical optimization (for example, limiting shoulder 

moments), and knowledge-based heuristics (such as 
determining the appropriate trade-off between stoop and squat 
in lifting by reference to data). The knowledge obtained from 
human subject data may be embedded in weights that are 
applied during the optimization process.  

Progress in posture prediction for ergonomic analysis has 
been slow in part because every human figure model uses a 
different kinematic linkage, with different joint angle 
definitions and degrees of freedom. Consequently, any method 
formulation that is dependent on a specific model is unlikely 
to be readily implementable in other tools.  

 
Artificial Neural Networks and Deep Learning 

 
The past ten years have seen an explosion of research and 

application of deep neural networks (DNN) and their variants 
(Aggarwal 2018). The availability of highly capable, freely 
available software tools such as PyTorch and TensorFlow 
have made DNN methods available to researchers in every 
discipline (Abadi et al. 2016). At a basic level, DNN methods 
enable the fitting of networks of interconnected elements with 
very high numbers of parameters in a robust and rapid manner. 
These networks capture complex non-linearities in training 
data that are difficult to discover and exploit in hand-crafted 
statistical models. Although most applications of DNN 
methods are focused on classification problems, neural 
network methods are also widely applied to regression 
problems that have vectors of continuous variables as outputs.  

DNN methods have been applied to human posture 
prediction for at least 25 years (Jung and Park 1994, Perez and 
Nussbaum 2008, Zhang et al. 2010). Some recent papers have 
used DNN and related methods for human motion prediction 
in the context of collaborative robotics (Cheng et al. 2019, 
Kratzer et al. 2020, Zhang et al. 2020). A recent study with 
direct applicability to ergonomics analysis used DNN methods 
to model lifting postures and focused on landmark locations 
rather than joint angles (Aghazadeh et al. 2020). The current 
paper focuses on the implementation of DNN landmark 
predictions applicable to any human figure model. 



For posture prediction, a large set of training data 
spanning the relevant posture is obtained, typically from 
optical motion capture systems. The parameterization of the 
data is critical. In most cases, the posture is parameterized by 
joint angles or quaternions, but as noted above this ties the 
predictions to the particular linkage definition. Prediction of 
Cartesian landmark locations (including joint center locations) 
has improved the performance of DNN models (Li et al. 
2021). Equally critical is the parameterization of the task 
specification. In many posture-prediction applications this can 
be very general (“walk”), but for ergonomics analysis a 
detailed parameterization of the task is required (hand 
locations, stance, required force), as well as the characteristics 
of the subject, are needed.  

This paper describes the development of a DNN posture-
prediction method incorporated into the Human Motion 
Simulation (Humosim Framework), a hierarchical, model-
agnostic approach for predicting task-oriented postures and 
motions (Reed et al. 2006). The overall goal of the paper is to 
present and discuss the challenges and potential solutions for 
using this powerful data analysis tool more widely for posture 
prediction in ergonomics applications.  
 

METHODS 
 
Data Source 
 

As part of a larger laboratory study of task-oriented 
postures, 25 men and women with a wide range of age and 
body size performed one-hand, push-button reaches to a wide 
range of target locations scaled by their stature. Figure 1 
shows the range of target locations, which were placed on 
azimuths from 45 degrees to the left of the subject to 90 
degrees to the right. The reach distances were scaled relative 
to the subject’s maximum reach capability in each direction 
(see Figure 2 for an example), and the heights were set to 
110%, 63%, and 41% of stature (approximately overhead, 
elbow height, and mid-thigh height). Foot placements were 
prescribed as either side-by-side or with the right foot in front 
of the left, with subject-selected lateral spacing in all cases. 
 
 

 
Figure 1. Top-view schematic of target locations. 

 
The participant’s body dimensions were recorded using 

standard anthropometric techniques and an optical motion 
capture system (Vicon) was used to track their postures. 
Figure 2 shows the retroreflective markers attached to the 

participants. Custom software was used to estimate joint 
center locations based on the surface landmarks. The 
participant stood on a force platform with self-selected side-
by-side or tandem (one foot further forward) foot placements. 

 

 
 

Figure 2. Retroreflective motion-capture targets on a subject 
completing a maximum lateral reach. 

 
The current results are based on predicting the locations 

of a set of joint centers and landmarks shown in Figure 3 in 
Cartesian space. This approach provides the advantages noted 
above for applying the results to any figure linkage having 
these joints and landmarks. Prior to prediction, the location 
data were expressed relative to the centroid of the initial base 
of support and scaled by participant stature. After processing 
and verification, a total of 3103 trials were available for 
analysis. The mean (sd) of stature was 1741 (85) mm; BMI 
25.6 (4.8) kg/m2; age 38 (17) years. 

 
 

 
Figure 3. Extracted posture, showing modeled joints and landmarks. 
A large number of additional landmarks are available in the 
underlying data, but this constitutes approximately a minimal set 
necessary to obtain a complete posture sufficient for whole-body 
ergonomics analysis. 
 
DNN Modeling 
 

The task input was described by the azimuth, elevation, 
and distance of the target (i.e., spherical coordinates) scaled by 
stature. The participant’s stature, BMI, sitting height, sex, and 
age were also used as predictors, along with the fore-aft 
distance between the participant’s foot placement (tandem 



offset). The output was the 3D stature-scaled coordinates of 29 
landmarks and joints.  

A DNN model structure was determined by typical 
methods that involve searching for values of various 
hyperparameters that yield the best predictions. The model 
was fit in R using the caret package to interact with the Keras 
library interface to TensorFlow (Gulli and Pal 2017). The 
ADAM optimizer was used with a mean-square-error (MSE) 
criterion. The data were randomly split 80/20 into training and 
test sets. Hyperparameter tuning was conducted on a grid 
using random sampling of 80% of the training data. At each 
training epoch, 30% of the training data were randomly 
withheld for validation. Figure 4 shows the selected model 
structure, which was trained for 120 epochs.  
 

 

 
 

Figure 4. DNN model structure and plot of training and validation 
loss function (MSE) across 120 epochs 

 
Implementation 
 
The DNN model predicts a set of landmarks and joints that 
then must be interpreted through a kinematic linkage, 
considering the requirements and constraints mentioned 
earlier, to obtain a complete posture prediction. For the current 
demonstration, a partial implementation of the Humosim 
Framework in the R language was used.  
 
Figure 5 shows the structure of the prediction process within 
the Framework. Because the results are not guaranteed to be 
consistent with any particular kinematic linkage, certain 
degrees of freedom are prioritized. The model first sets the 
pelvis position and orientation according to the prediction, 
adjusting the height to ensure that the inverse kinematics (IK) 
algorithms can place the feet on the predicted locations. The 
IK matches the predicted plane of each lower extremity but 
may produce a different knee location from the prediction 
depending on the particular figure linkage.  
 
The lumbar spine degrees of freedom are then adjusted to best 
match the predicted thorax orientation and the clavicle 
segments set to place the glenohumeral joints as close as 
possible to the predicted locations. IK is then used to position 
the upper extremities to respect the task constraints while 
matching the predicted elbow locations as closely as possible. 
The head and neck posture is generated similarly, with the 
head orientation prioritized over location. Balance is then 
checked, based on the particular segment mass distribution of 

the figure. If the projected center of pressure lies outside of the 
base of support the pelvis location is adjusted and the rest of 
the segments iterated in the same sequence. Also, if the upper-
extremity IK is not capable of achieving the required hand 
position, the torso iterates to improve the shoulder location. 
For reaches similar to those in the training set, the method 
usually converges in a single iteration, although a balance 
correction is needed, or, if the posture is extreme, then several 
iterations are sometimes needed.  
 

 
 
Figure 5. Schematic of simplified Humosim Framework prediction 
process for standing reach postures using DNN. 
 

RESULTS 
 
DNN Predictions 
 
The DNN predictions were evaluated against the 20% of data 
that were withheld. Figure 6 shows comparisons of observed 
and predicted postures for a few reach locations. Neglecting 
the left upper extremity, which was not involved in the task, 
MSE for joint locations across the test set increased with the 
distance along the linkage from the feet: 17 mm at the right 
ankle joint, 38 mm at the right hip joint, 43 mm at C7/T1, and 
61 mm at the right wrist joint. We note that the MSE is most 
useful for comparing between alternative models, as large 
variability in the underlying data that is not related to the 
predictors. As a reference dimension, the mean stature in the 
data set was 1693 mm, so the largest of these MSEs is about 
4% of stature.  
 

 
Figure 6. Comparison observed (black) postures from the test set with 
predicted postures (red) from the DNN model. 
 
The model can also be used to explore the effects of subject 
covariates on posture. Figure 7 depicts two reach cases that 



demonstrate the effects of varying stature when reaching to the 
same target. Sex and age were not important predictors after 
accounting for overall body size. 
 

 
 
Figure 7. Effects of stature (black = 1520 mm, red = 1870 mm) on 
predictions of standing reach postures. 
 
Implementation 
 

Figure 8 shows some examples of the Framework 
implementation of the DNN along with the corresponding 
DNN predictions. The figures show the blue Framework 
prediction deviating from the green unadjusted DNN 
prediction as needed to reach the right-hand target and 
maintain balance. The bottom two reaches are outside of the 
range of the posture in the training data, showing the 
extrapolation capability of both the DNN and the framework.  

The DNN prediction is essentially instantaneous, 
providing support for real-time interaction. The DNN is 
capable of interpolating and extrapolating very smoothly, 
although anomalies such as unrealistic segment proportions 
are observed in more-extreme conditions. However, the 
Framework implementation is not meaningfully affected by 
these discrepancies and continues to provide plausible results 
well beyond the training data.  
 

DISCUSSION 
 

The DNN approach generates a “black box” model with 
model coefficients that are not amenable to interpretation. 
Instead, the performance of the model is evaluated 
qualitatively by manipulating the input parameters and 
quantitatively by comparing with withheld data. The 
Framework implementation compensates for the limitations of 
the predictions, including the inevitable mismatches between 
the figure segment lengths and those generated by the 
predictions. Conceptually, all segment lengths could be 
included as predictors, but the results would still not perfectly 
conform with the linkage and so minimal benefit would be 
obtained. The posture could be parameterized as joint angles, 
rather than as Cartesian coordinates, but implementation 
would still require conversion to Cartesian space via the figure 
linkage and the other adjustments needed to meet the task 
constraints. In our experience, joint-angle-based methods 
require larger adjustments due to non-linearities inherent in 
the segment motions. For example, small discrepancies in 
proximal joint angles produce magnified effects at the end 

effector (hand, head, foot) locations. With the current 
approach, these discrepancies do not accumulate across the 
linkage.  
	

 

	
 
Figure 8. Examples of one-hand standing reach predictions from the 
Humosim Framework implementation developed to demonstrate the 
DNN application (blue lines). The DNN predictions are shown in 
green with thin lines. The small red spheres are hand targets. The 
large red sphere is the whole-body center of mass, computed based 
on the posture and segment masses. The yellow sphere is the 
projected center of mass relative to the green base of support.  
 

The Humosim Framework approach explicitly prioritizes 
some degrees of freedom based on biomechanical 
understanding. For example, shoulder location is more 
important than elbow location for most ergonomic analyses, 
and pelvis position and torso orientation are very important for 
determining balance and lower-back loading. In our 
experience, this prioritization produces better results for 
ergonomic analyses than would be obtained by, for example, 
optimizing the posture to minimize the discrepancy across all 
predicted joints and landmarks. Recent comparisons of model-
predicted and measured postures have highlighted the 
importance of evaluating the effects of model discrepancies on 



the ergonomic analysis (for example, low-back loading) rather 
than focusing exclusively on measures of posture error (Potash 
et al. 2022). That is, what ultimately matters for ergonomics 
analysis using human figure models is that the analysis 
correctly identifies potentially injurious or stressful scenarios. 

The choice of hyperparameters (for example, the number 
of nodes in each layer) may not be optimal in a global sense. 
That is, the MSE was calculated across all posture degrees of 
freedom without consideration of the importance for 
ergonomics analysis. For the one-hand reaches, the non-task 
arm posture is of minimal importance, and hence it would be 
reasonable to exclude those degrees of freedom or reduce the 
weight in the analysis. Ultimately, though, the model 
performance on withheld from withheld subjects should be 
used to understand prediction accuracy and precision. 

As with other laboratory studies, the current results may 
not be representative of postures that an experienced worker 
would use for similar tasks. The current work is limited by the 
scope of postures in the training set and the stick figure used 
to represent the outcomes in this paper is primitive. 
Implementation with a full 3D surface manikin could reveal 
additional limitations, such as with shoulder postures. 

We plan to extend this work in several ways. We have 
access to more than 50,000 task-oriented motions that provide 
an opportunity to expand the range of postures the model can 
predict. We also anticipate that expanding the model to predict 
motions will be straightforward: instead of predicting single 
locations for each joint, we instead predict the control points 
of splines fitted to motion data (Faraway and Reed 2007). 
Preliminary investigation of this approach is promising. As the 
model becomes more capable and mature, we plan to make it 
publicly available to facilitate implementation. 
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