Soldier Modeling for Improved Accommodation and Safety

Quad Members
Faculty: Matthew P. Reed, Jingwen Hu, Han Kim, Jonathan D. Rupp, Judy Jin
 U. of Michigan
 Zissimos Mourelatos, Dorin Drignei
 Oakland U.
Student: Yaser Zerehsaz (GSRA), Daniel Park (post-doc), many undergrads
 U. of Michigan
Industry: Jeff Mayhugh, Navistar
 Ulrich Raschke, Siemens
Motivation

• Current and future vehicle programs face major challenges in providing adequate accommodation for soldiers while ensuring performance and safety

• Current MIL-STD 1472g lacks detailed information on soldier posture and body shape, including the effects of personal protective equipment (PPE) for seat and vehicle interior layout

• Current design guidance is based on outdated anthropometry and tools that do not adequately represent soldier attributes

• Design standards for seats, restraints, and vehicle interior layout do not take into account PPE and gear
The Seated Soldier Study

Methods:

- Measured 310 soldiers at 3 Army posts
- Driver and squad postures
- Whole-body laser scanning

Standard Anthropometry

Driver Postures

Laser Scans

Squad Postures
S³: Major Outcomes

Statistical Models of Body Shape

Clearance Requirements

Data on Harness Fit
Driver Posture Prediction

Goal: Predict driving posture

Inputs:
- steering wheel location re accelerator pedal
- driver stature, erect sitting height, body weight, and gear level (ACU, PPE, ENC)

Outputs:
- Seat position
- Seat back angle
- Hip location
- Eye location
- Body segment angles
Goal: Predict squad posture

Inputs:
- seat height and back angle
- stature, erect sitting height, body weight, and gear level (ACU, PPE, ENC)

Outputs:
- Hip location
- Eye location
- Body segment angles
Background: Design tools embodying human accommodation requirements are needed for vehicle interior layout

Objective: Create soldier-specific design tools using methods developed at U-M

Method: Analyze driver and squad posture and space-claim information from Seated Soldier Study

Status: Driver and squad models completed; preparing documentation and assisting TARDEC in implementation
Seat Index Point Tool

Background: The current standard tool for measuring seats is not practicable for many squad seating conditions.

Objective: Evaluate and adapt the ISO 5353 Seat Index Point Tool for military seating applications.

Method: Add back angle probe; Comparative measurements of military seats.

Status: Completing initial testing; finalizing back angle probe; preparing documentation.
New Driver Configurations

Background: New vehicle designs may include driver workstations markedly different from typical trucks

Objective: Quantify driver posture and component-location preferences for 3 configurations

Method: Field study using soldiers in mockups

Status: Constructing mockups for pilot testing; full-scale testing on an Army post Fall 2014
Background: Soldiers wearing heavy gear must perform a wide range of in-vehicle tasks; current data with light clothing are not applicable.

Objective: Quantify the effects of body armor and body borne gear on seated reach capability and difficulty.

Method: Laboratory motion-capture study using volunteers with a wide range of body size.

Status: Full-scale testing underway (targeting 36 subjects)
Equipped Reach
Background: Many soldier injuries in vehicles are due to crashes, including rollovers

Objective: Optimize airbag/restraint system designs for occupant protection in tactical vehicles in frontal and rollover crashes using sled tests, finite element simulations, and a hybrid optimization process

Method:

• Baseline sled tests
• Develop and validated occupant and compartment FE models
• Parametric simulations and hybrid design-space exploration optimization*
• Airbag/restraint optimizations
• Additional sled tests to verify optimized solutions

* Collaboration with Oakland University
Crash Protection
Crash Protection

Baseline Sled Tests: Body Armor

3-Point Belt

5-Point Harness
Crash Protection

Baseline Sled Tests: Added Gear

3-Point Belt

5-Point Harness
Finite Element Models

Midsize Male HIII ATD with ACU, IOTV, and TAP
5-Point Baseline – No Gear
WIAMan Activities at U-M

- UMTRI is one of several sites conducting biomechanics testing in support of the Warrior Injury Assessment Manikin program.

- The U-M role includes anthropometric specifications for WIAMan and subject positioning guidelines using ARC Seated Soldier Study data.
• Driver posture data collection at an Army post (summer 2014)
• Optimizing vehicle layout taking into account multiple design constraints
• Seat design guidelines, methods, and technology to account for current body dimensions and gear
• Advanced manikin generation, including realistic effects of encumbrance (with NSRDEC)
• HMMWV frontal crash and rollover testing, restraint system optimization using FE models
• FS^3: Extending seated soldier with more female participants?
Research Team and Collaborators

TARDEC
Risa Scherer
Katrina Harris
Holly Howard
Harry Zywiol
Stacy Budzik
Jennifer Ammori
Mike Megiveron
Hollie Pietsch
Gale Zielinkski
Frank Huston
Rebekah Gruber
John Tesluk

Anthrotech
Bruce Bradtmiller
Belva Hodge
Lisa Ann Piercy
Mike Mucher
Mark Breza
Travis Hotaling
Tatiana Lurie
Christina Smith

U-M
Sheila Ebert
Jingwen Hu
Jon Rupp
Carl Miller
Nathaniel Madura
Brian Eby
Quentin Weir
Charlie Bradley
Laura Malik
Judy Jin
Yaser Zerehsaz

Industry
Jeff Mayhugh
Pete Kempf
Ulrich Raschke

Other US Army
Brian Corner
Steve Paquette
Todd Garlie
Joe McEntire
Rick Kosycki

Oakland U
Zissimos Mourelatos
Dorin Drignei

US Army Site POCs
John MacArthur (JBLM)
Fred Corbin (Ft Hood)
Jim Parks (Ft Campbell)
This work was supported by the Automotive Research Center, a U.S. Army Center of Excellence for Modeling and Simulation of Ground Vehicles led by the University of Michigan

For more information:

mreed@umich.edu

mreed.umtri.umich.edu