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ABSTRACT

Recent research in the ASPECT (Automotive Seat and
Package Evaluation and Comparison Tools) program has
led to the development of a new method for automobile
driver posture prediction, known as the Cascade Model.
The Cascade Model uses a sequential series of
regression functions and inverse kinematics to predict
automobile occupant posture.  This paper presents an
alternative method for driver posture prediction using
data-guided kinematic optimization.  The within-subject
conditional distributions of joint angles are used to infer
the internal cost functions that guide tradeoffs between
joints in adapting to different vehicle configurations.  The
predictions from the two models are compared to in-
vehicle driving postures.

INTRODUCTION

The widespread use of human figure models to develop
and evaluate vehicle interiors has created a need for
accurate vehicle occupant posture prediction. Vision,
reach, and other analyses performed with figure models
in virtual vehicle mockups are limited by the accuracy of
the manikin postures.  A recent program to develop new
tools for vehicle design (ASPECT) included the
measurement of vehicle occupant postures in hundreds
of vehicle and seat conditions (1, 2).  As part of that
program, a new approach to posture prediction for
automobile occupants was developed (3).  

The Cascade Prediction Model (CPM) places the highest
priority on accurate prediction of hip and eye locations,
two of the posture characteristics that are most important
for vehicle interior assessment. Regression equations
created from laboratory data and adjusted using in-
vehicle data are applied to predict hip and eye locations
from occupant anthropometry, vehicle interior
configuration, and seat characteristics.   An inverse-
kinematics approach is used to fit torso and limb
segments to the calculated landmark locations within the
kinematic constraints of the driving task.  Reed et al. (3)
demonstrated that the CPM accurately predicts driver
postures in vehicles.

An important earlier model to predict driving postures
was developed by Seidl (4).  The Siedl approach used a
kinematic optimization guided by the distributions of joint
angles observed in laboratory testing.  As part of the
recent ASPECT work, a conceptually similar approach
was explored as an alternative to the Cascade Model.
The Optimization Prediction Model (OPM) identifies the
most likely posture among the kinematically feasible
postures based on the observed distribution of joint
angles from laboratory experiments.  This paper presents
the development of the OPM and compares the results to
the Cascade Model.  The development and performance
of the OPM provides insight into the posture-selection
behavior of automobile drivers.

METHODS

DATA SOURCES – The CPM and OPM were developed
using the same data from a laboratory study of driving
posture (2, 3).  An anthropometrically diverse group of 68
men and women selected their preferred driving postures
in a vehicle mockup that was configured to represent a
wide range of vehicle interior conditions.   External body
landmark data recorded with a sonic digitizer were used
to calculate joint locations defining a three-dimensional
kinematic-linkage representation of the body (5).  The
resulting lengths, positions, and orientations of the
linkage segments were used in the development of the
posture prediction models.

GENERAL MODEL FORMULATION

VEHICLE GEOMETRY DEFINITIONS AND MODEL
INPUTS – Posture prediction is conducted in a vehicle
package coordinate system, defined by several
commonly used vehicle reference points.  Complete
definitions of these points can be found in Society of
Automotive Engineers Recommended Practice J1100
and associated practices (6).  The X axis in the package
coordinate system runs positive rearward, the Y axis
positive to the driver’s right, and the Z axis positive up.
The origin is defined by a different point on each axis.
The origin X coordinate is defined by the Ball of Foot
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(BOF) reference point, while the origin Z coordinate is
defined by the Accelerator Heel Point (AHP).  In general
terms, vertical dimensions are measured from the floor
and fore-aft dimensions are measured from a point on
the accelerator pedal.  For the current analysis, the origin
Y coordinate is the centerline of the driver seat.  Figure 1
illustrates these reference points on a sideview schematic
of the driver’s station.  

A number of vehicle package dimensions are used as
inputs to the posture prediction models.  These
parameters have been varied systematically in testing or
are those whose specification is necessary to sufficiently
characterize the locations of components.  The weighted,
contoured H-point manikin (SAE J826) measures a
reference point on the seat known as the H-point (a hip-
joint location estimate).  When the seat is moved forward
and rearward along its adjustment track, the orientation
of the path of the H-point relative to the horizontal defines
the seat track angle.  The seating reference point (SgRP)
is the H-point location that lies on the 95th-percentile
selected seat position curve given by SAE J1517 (3).
This curve is a second-order polynomial describing the
horizontal position of the 95th-percentile of the seat
position distribution as a function of seat height.  Seat
height is defined by the vertical distance between the
SgRP and the AHP, and is termed H30, following the
dimension definitions in SAE J1100.  

Figure 1. Vehicle package geometry.  Expressions in 
parentheses are Society of Automotive 
Engineers nomenclature from SAE J1100 (3).  

Seat cushion angle (L27) specifies the orientation of the
lower part of the seat (seat pan) with respect to
horizontal, and is measured using the H-point manikin
with a procedure described in SAE J826.  Seat cushion
angle does not generally correspond to any measure of
the unloaded centerline contour of the seat, but instead
represents the cushion orientation experienced by a
standardized sitter.  The steering wheel is characterized
by the coordinates of the center of the front surface of the
wheel, the angle of the front surface of the wheel with
respect to vertical, and the diameter of the wheel.  The
horizontal distance from the center of the steering wheel

to BOF is a key package dimension and is denoted L6 in
SAE J1100.

Table 1 lists vehicle geometry inputs to the posture
prediction model in two categories: parameters that
solely affect kinematic constraints imposed on the
models, and those that are variables in the predictive
equations.  Only three variables are used in the posture
prediction models: H30, L6, and L27.  Notably, the
vertical position of the steering wheel and the degree of
forward vision restriction imposed by the instrument
panel or vehicle cowl are not included.  The vertical
position of the steering wheel is highly constrained in
vehicle design, because of the conflicting requirements of
sufficient leg space beneath the wheel and sufficient
vision above the wheel.  The leg depth of large drivers
and the eye height of small drivers tend to constrain the
vertical steering wheel position to a small range relative
to the SgRP location.  Restrictions on forward vision, in
the range that is reasonable for vehicle design, do not
have important effects on posture (7).

The driver’s characteristics are represented in the models
using four parameters: gender, stature, weight, and
sitting height.  Additional anthropometric data, such as
arm or leg lengths, do not provide substantially better
prediction.  Because stature, weight, and sitting height
are correlated in the data set, two transformations of the
variables were used as regressors.  The ratio of sitting
height to stature (SH/S), a measure of body proportion,
was used in lieu of sitting height, and the Body Mass
Index (BMI), the ratio of mass (kg) to stature (m) squared,
was used instead of mass.  Each of these two ratio
variables is only moderately correlated with stature in this
dataset (r = –0.34 and 0.32 for SH/S and BMI,
respectively). The predictive ability of regressions using
these variables, assessed using the adjusted R2 value,
was within 0.01 of the values obtained using sitting height
and mass directly, while reducing the problems
associated with correlated regressors. 

In the CPM, driver anthropometric characteristics are
used as input to regression equations that calculate the
most important postural degrees of freedom.  The OPM
uses anthropometry primary to scale the kinematic
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linkage (i.e., figure model).  Subject stature and sitting
height are used in one part of the algorithm to tune the
optimization (see below). 

KINEMATIC MODEL – Driving posture is represented
using a kinematic linkage model of the human body.  The
linkage and its derivation from external body landmark
data are described in detail elsewhere (3, 5).  Figure 2
shows the linkage and defines variables that are used in
the posture prediction models.

MODEL SIMPLIFICATIONS AND RESTRICTIONS –
Several simplifying assumptions are made to reduce the
model complexity.  Normal driving posture is considered
to be sagittally symmetric, with the posture of the left side
of the body mirroring the right.  In the data collection
used to develop the models, subjects were asked to
choose a “normal, comfortable driving posture” with their
hands located at the 10-o’clock and 2-o’clock position on
the steering wheel.  By observation, the only important
deviations from sagittal symmetry occurred when left
lower-extremity postures did not match the right lower-
extremity, which was constrained by the requirement of
operating the accelerator pedal. Data from the right
upper and lower extremities were used exclusively for
developing the models, since the geometric task
constraints imposed by the accelerator and brake pedals
operate solely through the right lower-extremity (no
vehicles or laboratory mockups with foot-operated
clutches were used in this part of the study).   The hand-
position constraint in testing was imposed so that the
elbow angle would be a reliable measure of the distance
between the steering wheel and torso.  The performance
of the models in predicting postures measured in
conditions with free hand placement suggests that this
constraint provides useful upper-extremity posture data
without otherwise affecting posture (see Results).  To
simplify limb kinematics calculations, the hands are
assumed continuous with the forearms.  Foot posture is
neglected in favor of direct prediction of ankle joint
location.  Prediction of foot and ankle positions is based
on data from Schneider et al. (8).  

CASCADE PREDICTION MODEL

Figure 3 shows a schematic of the CPM, as presented
previously (3).  The vehicle and seat geometry, along with
the subject anthropometry, are input to a series of
regression equations.  The fore-aft hip location and hip-
to-H-point offset are calculated independently, then
combined with the seat track geometry to predict hip
location.  Eye location is calculated relative to hip
location, using independent regression equations for
horizontal and vertical position.   The torso is then fit
between the calculated hip and eye locations using data-
guided inverse kinematics (3).  Upper extremities are fit
between the calculated hip/shoulder locations and the
pedal/steering wheel positions, again using inverse
kinematics with heuristics developed from measured
posture data.  

Figure 2. Definitions of kinematic linkage and posture 
measures (5).  Angles referenced to 
horizontal or vertical are XZ (sagittal) plane 
angles.  Angles between segments (elbow 
angle, knee angle, and ankle angle) are 
measured in the plane formed by the 
segments (included angles).  Note: Neck 
angle is negative as shown.  All other angles 
are positive as shown.

OPTIMIZATION PREDICTION MODEL

The optimization prediction model (OPM) uses a
completely different approach to posture prediction from
the regression-based methods used with the CPM, and
has antecedents in a number of previous posture
prediction schemes.  Many researchers have proposed
that there are joint angles, various called comfort angles
or neutral postures, that result when the moments across
the joint are passively balanced (9-17).  If there are

Head

Neck

Thorax

Abdomen

Pelvis
Thigh

Leg

Forearm

Foot

Arm

Z

X

Upper Neck Joint 
(Atlanto-Occipital)

Lower Lumbar Joint 
(L5/S1)

Hip

Knee

Wrist

Ankle

Elbow

Upper Lumbar Joint 
(T12/L1)

Lower Neck Joint 
(C7/T1)

Shoulder

Center Eye 
Point

Knee Angle Pelvis Angle

Abdomen Angle

Thorax Angle

Neck AngleHead Angle

Elbow Angle



4

comfort costs associated with deviations from these
angles, then posture might be predicted by assuming that
people select postures that allow as many joints as
possible to be close to these neutral angles (13).  There
are three essential components to this approach.  The
neutral angles, the cost functions associated with
deviations from the neutral posture, and the manner in
which these costs are traded off or optimized must be
determined.  

The neutral angles have been identified in a number of
ways, most notably by observing postures underwater
and in zero-g environments (16), and by assuming that
the average postures observed over a wide range of task
conditions represent the preferred or neutral posture (13,
15, 17).  The cost functions and optimization procedure,
which are interdependent, have generally been
parameterized a priori, using, for example, a minimization
of the deviations from the neutral angles (13).  

Figure 3.   Schematic of Cascade Prediction Model (CPM).
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Kinematic Constraints 
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Model Input VariablesAnthropometric 
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Regression Predictions 
1.  Ankle Location 
2.  H-Point-to-Hip Offset 
3.  Hip X re BOF 
4.  Eye Location (X,Z)

Hip Location on 
Hip Travel Path

Torso Segment Fitting 
 (Inverse Kinematics)

Upper Extremity Fitting 
(Inverse Kinematics)

Lower Extremity Fitting 
(Inverse Kinematics)

Whole-Body  
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Figure 4.   Schematic of Optimization Prediction Model (OPM).

More recently, Seidl (4) proposed a novel method of
simulating the joint-angle comfort tradeoffs that are
frequently assumed to underlie posture selection
behavior.  The actual distributions of joint angles
measured over a range of task conditions (vehicle
package geometries) are used to determine the joint cost
functions.  A posture is selected within those
kinematically possible that simultaneously maximizes the
likelihood of each of the joint angles with respect to the
observed distributions.  This procedure, developed for the
RAMSIS software manikin, applies this method globally
to all joints in the model for each posture prediction.  

The OPM uses a modified version of Seidl’s approach,
illustrated schematically in Figure 4.  To begin, the
kinematic linkage is scaled and the ankle location, grip

location, and hip travel path are calculated as with the
CPM.  The OPM algorithm calculates the most likely
posture, based on the input data, that is consistent with
the specified kinematic constraints.

The kinematic optimization is conducted using the three-
dimensional linkage depicted in side view in Figure 5.
Intersegment motion in the torso is governed by the
same motion distribution parameter values used in the
CPM (3, 7).  Three angles are used in the optimization
process: elbow angle, knee angle, and torso angle.  The
elbow and knee angles are the angles formed by the
adjacent model segments at the respective joints (larger
angles represent greater extension), and torso angle is
the XZ-plane angle of the vector from hip to shoulder with
respect to vertical.
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Stature 
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Sitting Height

SgRP (XYZ) 
Steering Wheel Center (XYZ) 
Seat Track Angle 
SW Diameter 
SW Angle 
Accelerator Pedal Center (Y)

Grip Location 
(2- and 10-o’clock)

Elbow Angle 
Knee Angle 
Torso Angle

Kinematic Constraints 
and Geometric Referents

Empircal Joint Angle  
Distributions

Anthropometric 
Variables

Regression Predictions 
1.  Ankle Location 
2.  H-Point-to-Hip Offset 
3.  Leg Splay 
4.  Arm Splay

Hip Travel Path

Torso Segment Fitting 
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Whole-Body  
Driving Posture

Maximize Joint Probability of 
Elbow, Knee, and Torso 
Angles within Kinematic 

Constraints
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Figure 5. Posture variables used in OPM.

In the reference dataset, the mean values of knee angle
and torso angle are not significantly related to the
anthropometric variables, but mean elbow angle is a
function of stature and the ratio of sitting height to stature.
The mean values and predictive equation, used to
determine the neutral values in the optimization, are
given in Table 2.  While Seidl used the pooled angle
values from all subjects to model the distribution of
angles, a more direct interpretation of the relative sizes of
the angle distributions can be obtained by first
subtracting off each subject’s mean values.  The spreads
of the resulting distributions reflect the average within-
subject joint-angle tradeoffs.  Shapiro-Wilk W-test values
given in Table 2 indicate that, for each variable, the
within-subject angle distribution is not significantly
different from normal. 

In the within-subject analysis, the relative sizes of the
angle distributions represent quantitatively the joint angle
tradeoffs used by the subjects in adjusting to a wide
range of vehicle and seat geometries.  Angle changes at
the elbow were largest, followed by knee angle, with only
small angle changes occurring in the torso.  

The objective of the OPM is to select, from the postures
that meet the kinematic constraints, the posture that is
most likely.  This means choosing the vector of joint
angles

Φ = {knee angle, elbow angle, torso angle} 
= {φ1, φ2, φ3} (1)

such that the joint (conditional) probability of Φ is
maximized.  In the original approach developed by Seidl,
the range of test conditions was restricted in a way which
reduced the correlation among the variables to the point
where they could be neglected.  In that case, the
combined probability is simply the product of the
probabilities at the individual joints.  However, in the
broader dataset used for the development of the OPM,
there are potentially important correlations among the
joint angles, notably between the elbow and knee angles
(r = -0.39).  Therefore, the likelihood of a particular angle
at one joint is dependent on the value of another joint.  To
compute the overall likelihood of a posture, it is
necessary to consider the conditional probability. 

Using the marginal normality findings from Table 2, the
three individual joint angle distributions can be
considered as a single multinormal distribution
characterized by mean vector µµµµ and covariance matrix Σ.
The probability density function for the random vector Y,
where Y has multivariate normal distribution, is given by 

where µµµµ is the mean vector, r is the dimension of Y (3, in
this case), Σ is the covariance matrix,  |Σ | denotes the
determinant of Σ, and Σ-1 denotes the inverse.   For the
knee, elbow and torso angles used in the OPM, the mean
values are given by the expressions in Table 2 and the
covariance matrix is given in Table 3.  The optimization
problem, then, is to find the vector Y = Φ for which ƒ(µ, Σ)
is a maximum.  

Because of the kinematic constraints imposed by the
ankle location, grip location, hip travel path, and torso
motion distribution, the kinematic linkage has only two
degrees of freedom (neglecting arm and leg splay).  If the
knee angle and torso angle are given, the elbow angle
can be computed from the constraints.  This reduces the
optimization problem to the search of a two-parameter
space, and the objective function (posture likelihood) can
be plotted as a surface for any particular vehicle-
geometry/anthropometry combination, as shown in
Figure 6.  The single local maximum is also a global

Table 2. Angle Distribution Parameters for OPM

Angle

Between-
Subject 
Mean 

(degrees)

Within-Subject 
Standard 
Deviation 
(degrees)

Shapiro-Wilk 
Test for 

Normality 
(W, p)*

Torso 23.8 2.8 0.994, 1.00
Knee 118.0 7.9 0.986, 0.35
Elbow -297.0 + 

0.12 Stature 
+ 406.6 
SH/S†

11.6 0.987, 0.63

*p values less than 0.05 (or some other Type-I error level) would support 
a conclusion that the distribution is not normal. 
†Regression on stature (mm) and the ratio of sitting height to stature, R2 
= 0.32, RMSE = 19 degrees.

Table 3. Covariance Matrix (Σ)

Angles Knee Elbow Torso
Knee 62.41 -35.73 5.08
Elbow -35.73 134.56 -1.29
Torso 5.08 -1.29 7.84
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maximum, so a gradient-based approach is adequate to
compute the posture.  After determining the knee, torso,
and elbow angles using the optimization algorithm, the
torso segments are fit to the calculated hip and shoulder
locations using the same inverse kinematics approach
used with the CPM (3, 7). 

Figure 6. Empirical posture likelihood (arbitrary units) 
as a function of knee angle and torso angle 
for midsize-male anthropometry in a mid-
range vehicle package.

RESULTS

MODEL COMPARISONS – Figure 7 illustrates driver
posture predictions from the CPM and OPM for four
different body sizes in one typical passenger car
configuration.  The two models produce similar postures,
with the greatest differences observed with small female
anthropometry.  In particular, the CPM predicts a more
reclined torso posture for the small female than is
predicted by the OPM.  

Figure 8 shows the effects of a 200-mm change in fore-
aft steering wheel position at a midrange seat height with
midsize male anthropometry.  There are small differences
between models in the predicted postures, but the effects
of the steering wheel position change are similar.  Figure
8 illustrates the tradeoff between torso recline and limb
posture that drivers adopt in adjusting to different
steering wheel positions.  Table 2 showed that the within-
subject standard deviation of knee angle across a wide
range of vehicle configurations is about 2.8 times as large
as the standard deviation of torso angle.  This indicates
that drivers adapt to changes in fore-aft steering wheel
position primarily by changes in limb posture, while torso
recline changes only slightly.  

Small Female

Midsize Female

Midsize Male

Large Male

Figure 7. Comparison of postures predicted by CPM 
(thin lines) and OPM (thick lines) for a range 
of body sizes.  Refer to Figure 2 for kinematic 
linkage description.  
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Figure 8. Illustration of effects of fore-aft steering wheel 
position on posture for midsize male for CPM 
(thin lines) and OPM (thick lines).

COMPARISON TO IN-VEHICLE DATA – The accuracy
of both models for predicting driving posture was
assessed using data from another study of driving
posture.  In this in-vehicle study, 60 men and 60 women
ranging in stature from 1441 to 1952 mm drove five
vehicles over a 15-minute road route, adjusting the seat
track position and seatback angle to obtain a comfortable
driving posture.  Each car was equipped with an
automatic transmission and was tested with the seat
track adjustment restricted to two-way (fore-aft) travel.
After returning from the road route, the driver’s preferred
posture was recorded using a FARO coordinate

measurement arm and procedures similar to those used
in the laboratory studies (2, 5).  Table 4 lists some of the
characteristics of the vehicles.  The vehicles were
selected to represent a substantial part of the range of
the interior geometry available in current passenger cars.

The CPM and OPM were exercised using the vehicle
configurations and individual subject anthropometry.  The
resulting eye position predictions were compared with the
observed eye positions to assess the model accuracy.
Table 5 lists the means and standard deviations of the
prediction errors by vehicle for each posture model.

The CPM predicted the mean eye location for the five
vehicles with considerable accuracy, as reported
previously (3).  The predicted horizontal coordinate was
within 10 mm in all cases, with average errors of 3.6 mm.
Both the CPM and OPM tended to predict eye locations
higher than those measured.  During the in-vehicle study,
measurements of eye location taken before and after the
drive indicated that eye locations averaged 9 mm lower
after the drive, a difference attributed to seat
compression.  Applying this dynamic Z correction brings
the average vertical prediction error for the CPM to about
2 mm and the OPM to about –12 mm.    The standard
deviation of the eye location errors were similar for the
two models, but the overall range of average error across
vehicles was larger for the OPM on the horizontal axis
(22.3 mm compared with 8.7 mm for the CPM).

Table 4. Vehicle Characteristics*

Vehicle Seat Height (mm) SWtoBOFX (mm) Seat Cushion Angle (deg)
Plymouth Voyager 326 504 14.0
Chrysler LHS 250 597 17.7
Dodge Avenger 189 577 16.6
Jeep Grand Cherokee 298 607 11.3
Plymouth Laser 194 550 11.3

* Some vehicles were modified from design intent.
.

Table 5. Comparison of Model Predictions vs. Observed Eye Locations in Vehicle Data:
Mean Observed minus Predicted (Standard Deviation)

Vehicle EyeX  (Obs - Pred) (mm) Eye Z (Obs - Pred) (mm)
CPM OPM CPM OPM

Plymouth Voyager 0.7 (52.2) -1.2 (50.4) -4.8 (20.6) -15.2 (20.4)
Chyrsler LHS 0.0 (46.5) 9.2 (46.3) -6.5 (18.1) -20.6 (18.3)
Avenger 2.5 (47.5) 20.0 (47.1) -7.4 (18.8) -22.7 (19.7)
Jeep Grand Cherokee 5.9 (49.6) 16.8 (50.3) -13.6 (18.9) -22.9 (18.9)
Plymouth Laser 8.7 (46.2) 21.1 (45.0) -2.2 (17.3) -24.9 (17.9)
Overall Mean 3.6 (48.4) 13.2 (47.8) -6.9 (18.7) -21.3 (19.0)
Dynamic Z Correction -- -- 2.1 -12.3
Overall Range 8.7 22.3 11.4 9.7
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DISCUSSION

The posture prediction method developed by Seidl (4)
used observed posture selection behavior to infer the
relative costs of deviation from average, preferred joint
angles.  The OPM presented in this paper refines the
approach by using a within-subject analysis and data-
guided inverse kinematics to simplify the calculations.
The resulting conditional joint angle distributions can be
regarded as a measure of the within-subject tradeoffs
between limb and torso posture changes when adapting
to different vehicle configurations.  Drivers adapt to
changes in steering wheel position (relative to the
pedals) primarily by changes in limb posture (elbow and
knee angles) with only small changes in torso recline.

When developed using the same data, the CPM and
OPM produce essentially equivalent predictions,
although the CPM is slightly more accurate for predicting
in-vehicle postures.  It is likely that the OPM could be
refined to replicate the accuracy of the CPM.  The
primary advantage of the CPM is that the predictions for
important postural characteristics, such as hip and eye
location, are written as closed-form, linear equations, the
coefficients of which quantify the relative effects of
stature, steering wheel position, and other inputs.  This
closed-form approach allows the predictions to be used
independent of any particular human figure model.  In
contrast, the OPM must be implemented using some type
of computerized search algorithm, and is tied to a
particular kinematic linkage.  

In spite of its limitations, the OPM provides some
interesting insights into posture-selection behavior.
When confronted with a range of workstation geometries,
people select postures that can be interpreted as an
optimization of an internal, unknown cost function.
Provoking a wide range of postural responses by testing
with an large variety of workstation geometries will elicit a
range of angles at each joint that imply the relative cost to
the worker of deviations from the average, preferred
postures.  Looked at in this way, the experiments with
automobile driving postures suggest that changes in
torso posture typically have greater internal cost than
changes in limb posture. 

One potential advantage of the OPM is that it may
provide greater generalizability to novel tasks.  The CPM
can adjust the predicted posture only in response to
changes in the specific input parameters, such as seat
height and steering wheel position.  However, the OPM
will produce a different posture whenever the kinematic
constraints at the hands and feet are changed.  This is
actually a liability for prediction of normal driving
postures, because driving postures are not significantly
different when a driver’s hands are constrained to grasp

the steering wheel at different locations (3).   For other
tasks, such as reaching and grasping shifters, brake
levers, or other controls, the OPM method provides
greater adaptability. Yet, the predictions are not likely to
be accurate unless movements of this type were included
in the input database.  In general, the CPM approach will
always be more accurate for well-studied tasks, because
it is not constrained by the limitations of a kinematic
model.  

Both of the models included here have limitations arising
from test data on which they were developed and
validated.  The models are applicable only to seats with
fore-aft adjustment, although comparison to in-vehicle
data collected with height- and angle- adjustable seats
shows that the CPM is similarly accurate under those
conditions.  In all conditions, drivers were free to select a
preferred seatback angle.  Fixed or imposed seatback
angles would result in torso postures substantially
different from those predicted.  Finally, fore-aft adjustable
pedals that have recently been introduced in popular
vehicle models provide an additional adjustment degree
of freedom that was not included in the development of
these models.  Addition study will be necessary to
determine the resulting effects on posture.

The accuracy of ergonomic analyses using computer
manikins is strongly dependent on the accuracy of the
manikin postures.  The CPM and OPM compared in this
paper are two accurate ways of predicting normal driving
posture that may be used to facilitate vehicle interior
assessment.
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