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ABSTRACT

Most human figure models used in ergonomic analyses
present postural comfort ratings based on joint angles,
and present a single comfort score for the whole body or
on a joint-by-joint basis.  The source data for these
ratings is generally derived from laboratory studies that
link posture to ratings.  Lacking in many of these models
is a thorough treatment of the distribution of ratings for
the population of users.  Information about ratings
distributions is necessary to make cost-effective
tradeoffs when design changes affect subjective
responses.  This paper presents experimental and
analytic methods used to develop distribution models for
incorporating subjective rating data in ergonomic
assessments.

INTRODUCTION

Human figure models provide a flexible and powerful
means of assessing product and workstation designs
with respect to human requirements.  Figure models
facilitate analyses of:

•  spatial fit and clearance,
•  strength and load tolerance, and
•  vision requirements.
•  
Most figure models also produce comfort scores.  The
comfort scores are usually derived from studies in which
posture data and comfort ratings are obtained
simultaneously for a range of workstation geometries (1-
4).  Local postural comfort is calculated from joint angles
(e.g., elbow flexion or shoulder flexion), and the overall
score is calculated as a weighted sum of body region
scores.   Changing the posture of the figure model
usually changes the scores, because the scores are
driven by the joint angles of the figure.  Changing the
figure anthropometry while maintaining the same task
constraints (hand positions, for example) will often
change the joint angles and the comfort scores.   

The usefulness of comfort scores is substantially limited
because the scores apply only to a single figure (set of
anthropometric data) in a particular posture (set of joint
angles).  Comfort ratings will vary even among people
who match the figure anthropometry and who have the
specified posture.  More generally, a product or
workstation is designed for a population of users, each of
whom will have a unique set of anthropometric variables
and a unique set of postures, along with their own
personal comfort preferences.  Comfort evaluations with
a single figure, or even a family of figure models, will not
capture the range of comfort ratings for the user
population.  As a consequence, it is not possible to
optimize designs for comfort using the existing models.
For example, a particular layout for a driver’s workstation
in a car will produce a different posture for each member
of a family of figure models selected to span a wide range
of anthropometry.  The comfort ratings for each model
will consequently be different, yet the distribution of
ratings for the family of models does not provide a useful
quantitative indication of the distribution of ratings for the
actual user population, because

1. the figure models do not encompass the complete
distribution of anthropometric variables,

2. the figure models do not capture the range of
posture variance that is unrelated to anthropometry,
and

3. the models do not represent the variance in
subjective preference that is unrelated to
anthropometry or posture.

These limitations apply even if the anthropometric
scaling is correct and the posture prediction is accurate.  

This paper presents a general approach to the modeling
of population distributions of subjective ratings that can
be applied to the evaluation of any workstation, posture,
or environment.  Some examples from the auto industry
are subjective evaluations of steering wheel position,
headroom, legroom, lumbar support prominence, and
lower extremity posture.  The scales used to measure



these variables are different, but they share the general
characteristic of being amenable to rating using an
ordinal scale.  For example, steering wheel position
could be rated using an integer from -5 to +5, with
anchors at the ends indicating “too close” and “too far.”
Lower extremity posture could be rated on a discomfort
scale, with zero representing “no discomfort” and 10
representing “severe discomfort.”  The effort required to
operate a control could be rated as “very unacceptable,”
“somewhat unacceptable,” “somewhat acceptable,” or
“very acceptable.”  Data from an experiment concerning
subjective perception of vehicle headroom are used to
illustrate the modeling method, followed by a more
general statement of the steps in creating a useful model
of subjective rating distributions.

ILLUSTRATIVE ANALYSIS

DATA SOURCE – In this paper, methods for measuring
and modeling subjective evaluations are presented
using the example of automobile passenger headroom.
In a laboratory study, 90 men and women rated the
headroom provided by a range of roof configurations on
a five-point sufficiency scale, shown in Figure 1.
Although the study involved a variety of different roof
shapes and positions, this analysis will focus on the
effects of roof height on headroom perception, with the
objective of developing a model to predict the
distribution of occupant headroom ratings.
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Figure 1.  Headroom sufficiency scale.

The headroom rating is a useful dependent measure for
this example because, while the rating is likely to be
affected by anthropometry, it is related to posture only in
extreme conditions.  That is, a lower roof position may
affect the subjective perception of headroom without
affecting the occupant’s posture.  This is an example of a
subjective measure that is best predicted independent
of posture.

EXAMPLE DATA – Figure 2 shows distributions of
sufficiency ratings from 90 men and women for three roof
positions (high, medium, and low).  The mean rating
drops from 4.8 for the highest roof position to 4.3 and
3.0 for the middle and lowest roof positions,
respectively.  A typical subjective rating model would
produce these mean values for roof positions matching
the test conditions.  The mean ratings do not provide
much information about the cost, in terms of subjective
ratings, of changing the roof height.  Suppose the
highest and middle roof positions were two candidate
designs.  The difference in mean sufficiency rating is 0.5.
Is that an important shift?  Suppose the design
population is different from the original test population.
What effect will that have on the predicted ratings?

The example data in Figure 2 are typical of subjective
ratings data in several ways.  The data are not normally or
even symmetrically distributed, and the shape of the
distribution is affected by the independent variable (roof
height, in this case).  Because the distribution shape
changes, changes in the mean value of the distribution
do not provide useful information about changes in, for
example, the median or 90th percentile of the
distribution.
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Figure 2.  Ratings of headroom sufficiency for three roof
heights.  Mean ratings are 4.8, 4.3, and 3.0 for the highest,
middle, and lowest roof positions, respectively.

MODELING EXPERIMENTAL DATA – An ordinal scale
like the one in Figure 2 can be transformed to a set of
binary variables by choosing cutoff points.  For example,
analyses can be conducted on a variable that takes on a
value of one if the rating is equal to 4 or higher and zero
otherwise.  With a binary dependent measure, logistic
regression can be used to examine the influence of
subject variables (e.g., stature or sitting height) and test
variables (roof height, in this example) on the distribution
of ratings.  

A logistic regression fits the experimental data with a
function of the form

P[x] = 
e

e

ƒ

ƒ+1
 = 

1
1 + −ƒe

[1]

where P[x] is the percentage of subjects rating at the
selected criterion level and ƒ is a polynomial function of
the independent variables.  Figure 3 shows logistic
regression functions predicting the percentage of
subjects rating the headroom as sufficient or better as a
function of subject stature (erect standing height) for five
levels of roof height.  Similar functions could be
generated for other criterion levels (e.g., sufficiency ≥ 3).
The figure shows a nonlinear effect of roof height on
headroom ratings and an interaction with stature.   That
is, the effect of stature on the roof ratings varies with roof
height.   At the highest roof height, 100% of people of all



statures rate the roof height as sufficient.  At the lowest
roof height, only about 10 percent of people 1800 mm
tall would rate the roof height as sufficient compared with
over 60 percent of people 1500 mm tall.  
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Figure 3.  Logistic regression models showing the percentage
of people rating the headroom as sufficient as a function of
stature for five different roof heights.

The two independent variables in Figure 3, stature and
roof height, can be combined to create a single logistic
regression function,

ƒ = -16984 + 20 Stature –
0.078 (Stature) (Z) +
0.1723 (Z2) [2]

where stature is in mm and Z (roof height) is in mm
relative to an arbitrary reference.  Note the second-order
Z term that accounts for a substantial nonlinearity in the Z
effect (see Figure 3).  Nonlinearities are typical in
subjective data on roominess, clearances, and control
positions.  

For a particular roof position (the second-most restrictive
condition from Figure 3), the fraction of people predicted
to rate the headroom as sufficient is given by

P[stature] = 1– 1

1 16894 20+ −e Stature
[3]

MODELING POPULATION RATING DISTRIBUTIONS –
For purposes of this analysis, the occupant population
can be described by the stature distributions of males
and females plus the gender mix.  The distribution of
stature within gender is reasonably modeled by a normal
distribution.  Figure 4 shows adult U.S. male and female
stature distributions together with equation 3 predicting
the fraction of people of each stature who will rate the
headroom as acceptable.  For this population and roof
condition, what percentage of the total occupant
population will rate the headroom as acceptable?
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Figure 4.  Logistic regression predicting the fraction of people
rating the headroom as acceptable as a function of stature,
along with U.S. adult male and female stature distributions.
Stature probability density functions are multiplied by 1000 for
clarity.  Distributions shown with dashed lines are obtained by
multiplying the stature distributions by the logistic regression
function.

The normal distribution probability density function (PDF)
gives the probability of sampling a person of a particular
stature from the population.  (Or, more accurately, the
integral of the PDF from Stature1 to Stature2 is the
probability of sampling someone whose stature lies
between Stature1 and Stature2.)  If M[S] is the
probability of someone in the male occupant population
having stature S, and P[S] is the probability of someone
of that stature rating the headroom as sufficient, the M[S]
P[S] is the combined probability of sampling someone of
stature S and having them rate the headroom as
sufficient.  Summing over all statures is accomplished by
integrating M[S] P[S].  If the probability of a “sufficient”
rating is unity for all statures, then M[S] P[S] = M[S], i.e.,
the normal PDF, and the integral is unity.  If P[S] = 0.5
(half of people rate the headroom as sufficient
independent of stature), then the integral is equal to 0.5.  

Figure 4 shows the functions resulting from multiplying
each stature distribution by the logistic regression
function.  Note that the area under the male curve is
smaller, indicating that a smaller percentage of men are
predicted to rate the headroom as sufficient for this roof
height.  The male and female fractions (integrals of the
male and female curves) are combined using the ratio of
males to females in the population.  Defining m = fraction
of males in the occupant population, the fraction of the
total population rating the headroom as sufficient is given
by

H = m Fm + (1-m) Ff [4]

where Fm is the fraction of males rating at the criterion
level and Ff is the fraction of females.  In this example, if
50 percent of the occupant population is male, 71
percent of the population are predicted to rate the
headroom as sufficient.



GENERAL OUTLINE OF APPROACH

The headroom-rating example above illustrates the
general approach to creating population rating models.
The approach to collecting and applying subjective rating
data is summarized as follows:

1. Select a subjective rating scale that is appropriate for
the current application.

This step is critically important, yet is often given
insufficient attention.  The subjective rating models
predict the distribution of ratings that would be expected
if an identical questionnaire or rating scale were used
with the design being assessed.  A comfort model, for
example, does not predict comfort, but rather comfort
ratings.  Hence, a good rating scale is one that can be
used repeatedly in many studies.  It should be readily
and consistently understood by any potential study
participants, and should also produce values that
designers and managers find useful for establishing
design criteria.  Often this means using anchor words
that embody value judgments (such as “sufficient” in the
headroom scale).

2. Identify design population descriptors.

A product or workstation is designed for a particular
population of users, who are described using a number
of variables. Some variables are categorical (gender,
ethnic group), while others are continuous
(anthropometric variables, age).  Identification of
variables that will be used to describe the target
population is important because the study population
must be selected to include sufficient independent
variance in these variables.  For example, if stature and
age are both potential population descriptors, care must
be taken to select old and young study participants who
span a wide range of stature within each age group.  The
selected population descriptors will be input variables for
the population models.  At a minimum, a population will
usually be described by gender mix (fraction of males
and females in the population) and the stature
distributions for each gender.  

3. Identify variables used to describe test conditions.

Along with population descriptors, the other inputs to
the population ratings models are variables that describe
the physical environment and task constraints that
comprise the situation to be rated.  Two general
approaches have been used in comfort modeling.  One
is to use the postural response to the test conditions as
the descriptor.  In this case, the subjective response is
tied to the subject’s posture.  An alternative is to use
environment and task descriptors directly.  In the
automobile situation, variables such as seat height,
steering wheel position, and headroom are used
routinely.  As with the population descriptors and the
rating scale selection, it is critical that the test conditions

be described using variables that have long-term
meaning.  For example, many studies are conducted
comparing subjective ratings among several vehicles.
However, absent any quantitative descriptions of the
characteristics of the vehicles, the data (or models
derived from the data) have no generality.  

4. Conduct a study to gather subjective rating data.

Effective experiment design is a complex area, but there
are certain issues that are particularly important for the
development of subjective rating models.  First,
representative sampling from the target population is
almost never the best approach.  For most ergonomic
analyses, anthropometry is (or is believed to be) the most
important subject variable that will influence the ratings.
Stratification on anthropometry, with oversampling on
the tails of the distribution, provides a means of
increasing the statistical power for estimating
anthropometric effects.  Stratification and oversampling
should also be applied to other variables that are
hypothesized to affect ratings.  For example, a study of
vehicle ingress-egress might oversample older drivers,
relative to their representation in the population, to
provide more power to estimate age effects.  If the
hypothesized anthropometric effects are not observed
in the study data, the stratification does not diminish the
value of the study.  A population ratings model can be
constructed without anthropometric factors, using either
the pooled data from the stratified sample, or, more
conservatively, a resampled population configured to
match the target population.  

Test condition variables should also be manipulated
independently, but a full-factorial approach is appropriate
only a few variables are involved.  Experienced
practitioners can usually eliminate from consideration
many higher-order interactions, enabling a smaller, more
efficient experiment to examine the main effects and
interaction of interest.  As noted above, many subjective
phenomena (such as headroom ratings) are nonlinear in
the test condition descriptors, so three or more levels of
such variables may be required.

The collection of experimental data used for creating and
validating population ratings models should be viewed as
an ongoing process.  If the rating scale, population
descriptors, and test conditions are selected and
specified with an appropriate level of generality, it will be
possible to build up a database over a series of studies
that expand the range of applicability of the resulting
models.  

5. Construct population models.

The statistical analysis proceeds as in the example
above, with two basic steps:

a. Select subjective cutoffs to create binary variables
from the rating scale data (e.g., “sufficient” or better).



b. Conduct logistic regression analyses using
population and test condition descriptors.

Separate models are generated from each potential
binary cutoff on the rating scale.  Each predicts the
fraction of the population who will rate at or above the
specified criterion.  

6. Make predictions for candidate designs.

The models are applied by combining the population
descriptors with values for design parameters (such as
roof position in the headroom example).  Often, the
same design population (e.g., U.S. adults) will be used
for many analyses.  In that case, the ratings models are a
function only of the design geometry (or other test
condition descriptors).

DISCUSSION

PREDICTING POPULATION RATINGS DISTRIBUTIONS
– This paper presents a general approach to predicting
population distributions of subjective ratings based on
logistic regression.  The conventional approach to
modeling subjective data gives a single value for a set of
input conditions, which is usually intended to be
representative of the average rating.  Changing the input
variable values changes the response, but it is difficult to
interpret the importance of the change.   As noted
above, the change in mean could be driven by large
changes in ratings by a few people or small changes by a
large number of people.  

Design optimization is more readily performed when the
distribution of ratings is predicted.  The method
proposed above gives two scales on which design
criteria can be set.  First, a subjective rating criterion can
be selected (e.g., “sufficient” or better on the headroom
scale).  Second, a population accommodation level can
be chosen (e.g., 95 percent of the target population
rating at the subjective rating criterion).  One method for
applying these two interrelated scales is to set a
subjective criterion level according to the type of product
or workstation, and then to make design tradeoffs using
the accommodation level.  For example, the rear seat of a
sports car might be assessed using a “somewhat
sufficient” criterion level for headroom, while the front
seat might be assessed using “sufficient.”  Alternative
designs can then be evaluated based on the percentage
of the population who are predicted to rate at the
specified criterion level.  Suppose an increase in roof
padding is required to meet safety regulations, but that
change will reduce headroom by 20 mm.  What is the
cost of the change with respect to headroom
perception?  The question can be answered
quantitatively, in terms of the reduction in the
percentage of people rating the headroom as sufficient.

CHOICE OF INPUT VARIABLES – The subjective
assessment models in most human figure models report

postural comfort based on joint angles.  This approach
has a substantial advantage in that the input variables are
always directly available to the software algorithm.  The
most important disadvantage is that population ratings
cannot usually be generated from the posture of a single
figure.  Given population anthropometry, it would be
possible to model the distribution of ratings expected for
a population of people in the specified posture, but that
result would have little meaning.  People of different
sizes in the same task environment will have different
postures.  In general, comfort predictions based on joint
angles are useful primarily as an indicator of the extent to
which the specified posture approaches the limits of joint
ranges of motion.  Such predictions should be
interpreted in the context of the population variability in
posture and in joint range of motion (even within
individuals of similar body size).

An alternative approach is to specify the task constraints
and environment (i.e., the inputs to an individual’s rating
process) using variables and dimensions external to the
figure model.  In the automobile accommodation case,
such variables might include seat height, fore-aft
steering wheel position, and the height of the roof above
the seat.  The primary advantages of this approach are (1)
input parameters can be expressed in terms of
engineering design variables rather than with respect to
postural responses to those variables, (2) population
ratings distributions can be calculated, since the
environment variables apply to all members of the target
population, and (3) the effects of variables that have
negligible effects on posture, but important effects on
subjective ratings, can be quantified.  Headroom is an
example of a variable that affects overall comfort ratings
substantially, even among individuals whose posture is
not affected.  

Basing the subjective models on external variables
requires that the model user provide additional input —
the figure model posture is no longer sufficient.  There is
also a perceived reduction in generality, in that the
posture-based ratings models will provide a rating for
virtually any posture.  However, external variables are
frequently required for posture prediction, and hence
are already needed for figure model applications.
Moreover, mean comfort ratings for postures that are
obtained in task conditions other than those used to
generate the original subjective data are unlikely to be
valid.

IMPLEMENTATION IN HUMAN MODEL SOFTWARE –
The population-based modeling approach described in
this paper can be implemented outside of human figure
modeling software, but the models can also be
integrated with modeling software in a manner that
facilitates ergonomic assessments.  A user interface to
the models can be constructed that prompts the user for
the population description and for the workspace
variables that are inputs to the models.  For each figure
selected, the distribution of ratings expected for people



of the selected size can be calculated and displayed
along with the ratings expected for the entire target
population.

CONCLUSIONS

Current methods of calculating and presenting
subjective ratings data in human figure models are
inadequate because they do not capture the distribution
of ratings expected for a user population.  Further, using
only the figure posture as input unnecessarily limits the
subjective models by precluding the use of design
variables that do not substantially affect user postures.
The modeling approach described in this paper is
applicable to any ordinal subjective rating scale, and
predicts population ratings distributions as a function of
the task environment and the population description.
These models are valuable tools for assessing factor
tradeoffs during design optimization.
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