Effects of Driver Attributes on Lower Abdomen Contour

Matthew P. Reed
Byoung-Keon Park
UMTRI

Jason J. Hallman
Toyota Technical Center USA

UMTRI UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE
Previous Results: Lap Belt Fit

Mean belt locations with respect to ASIS for 97 drivers at lateral location of anterior-superior iliac spine (ASIS)

Reed et al. (2013) Stapp.

Midsize male pelvis in mean posture
Mean belt locations at lateral position of ASIS (not occupant centerline)
Adverse Kinematics

Comparison between test and simulation for a obese occupant
Belt Routing and Abdomen Contour

Belt position and webbing length are affected by both abdomen contour and driver behavior (belt donning).

What is the range of abdomen contour?

- Narrow range of belt locations
- Wide range of belt locations
Methods

Men and women with a wide range of age and body size

<table>
<thead>
<tr>
<th>Measure</th>
<th>Men (N=46)</th>
<th>Women (N=51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stature (mm)</td>
<td>1759 (85)</td>
<td>1601 (67)</td>
</tr>
<tr>
<td>Body Weight (kg)</td>
<td>87.9 (17)</td>
<td>69.9 (16)</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>28.4 (4.9)</td>
<td>27.3 (5.7)</td>
</tr>
<tr>
<td>Erect Sitting Height (mm)</td>
<td>913 (40)</td>
<td>845 (42)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>58 (19)</td>
<td>59 (20)</td>
</tr>
</tbody>
</table>

![Graph showing relationship between stature and weight for men and women, with data points and trend lines.](image-url)
Methods

Body measurements in hardseat and laser scanner
Body Scan Data

Approximate driving posture

Estimated pelvis size and location

UMTRI
Calculating Abdomen Contour

Estimated pelvis size and location

Closest point on surface lateral to ASIS bone landmark

Contour through omphalion landmark
Results – BMI Effects

Contour Length (mm) = -149 + 1.27*Age + 20.5 BMI, $R^2_{adj} = 0.75$, RMSE = 65.2 mm
Results – Age Effects

Contour Length (mm) = -149 + 1.27*Age + 20.5 BMI, $R^2_{adj} = 0.75$, RMSE = 65.2 mm
Discussion

• Lower abdomen contour relative to the pelvis is much longer for individuals with high BMI
 → greater belt webbing length
 → greater flesh deformation before substantial pelvis force in frontal impacts

• BMI has a much larger effect than age, across the population, and gender is unimportant for this variable

• Countermeasures to improve belt fit for higher-BMI individuals might reduce the increased risk in frontal impact
Morphed GHBMC Models

<table>
<thead>
<tr>
<th>Age</th>
<th>Stature 1.75m, BMI 25</th>
<th>Stature 1.75m, BMI 30</th>
<th>Stature 1.75m, BMI 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>70</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

Whole-body morphing by controlling 160k landmarks on the ribcage, pelvis, femur, tibia, and external body shape
Future Work

Can drivers be educated to place their belts more effectively regardless of BMI?

Can belt system design counter these effects?
Acknowledgements

This research was funded by the
Toyota Collaborative Safety Research Center
http://www.toyota.com/csrc/
Results

Lap Belt Fit

T060
80 years
35 BMI
1663 mm
-99, 117

T044
24 years
29 BMI
1621 mm
-53, 83

T053
72 years
24 BMI
1697 mm
-64, 51

T029
28 years
20 BMI
1779 mm
-5, -1

Large symbols = obese
Male + Female o

UMTRI