Effects of Driver Attributes on Lower Abdomen Contour
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Abstract Previous studies have documented increased injury risks for high-body mass index (BMI) and older
drivers in frontal crashes. Laboratory studies have shown that age and particularly high BMI is associated with
poorer lap belt fit. This study used three-dimensional body scan data to examine the contour of the lower
abdomen in the area in front of the pelvis. Laser scan data from 89 men and 94 women in an automotive
posture were used to calculate a contour spanning the area between the anterior-superior iliac spine
landmarks. The analysis showed the contour length was strongly associated with BMI and weakly with age.
High-BMI drivers had up to 3 times greater contour length. These results suggest that even with optimal lap belt
routing high-BMI drivers will interact differently with the lap portion of the belt than lower BMI individuals.
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I. INTRODUCTION

Previous studies have documented that age and high BMI, calculated as body weight in kg divided by stature
in meters squared, is associated with an increased risk of lower-extremity injuries in frontal crashes [1-5]. Some
of the increase in risk may be due to the relatively poor belt fit experienced by drivers with high BMI [5,6]. A
previous study documented that the length of lap belt webbing used by drivers with higher BMI was larger than
for those with lower BMI, and the lap belt was routed higher and more forward for those with high BMI and
increased age [7]. The current study used three-dimensional body shape data to examine the contour of the
lower abdomen and to determine the extent to which the abdomen shape affects the amount of belt webbing
required to span the pelvis.

1. METHODS
Three-Dimensional Body Shape Data

Laser scans of 89 men and 94 women wearing minimal clothing consisting of tight-fitting shirt and shorts in
an automotive posture were captured using a VITUS XXL laser scanner. Their stature ranged from 1435 to 1965
mm, greater than the range from Sth-percentile female to 95" percentile male for the U.S. population [8]. BMI
ranged from 17 to 49 kg/m?, and age ranged from 20 to 95 years. A custom apparatus was used to support the
posture that allowed maximum access for the scanner, which captured an average of about 500k surface points
for each scan. Because the automotive posture extended beyond the scanning volume, the test seat was
designed so that the subject could be moved without changing posture. The subject’s posture was carefully
controlled by fixing the seat back and seat pan angles and setting the limb postures using goniometers and a
level. Two scans were taken, each requiring about 12 seconds, separated by about 20 seconds. Subjects
breathed normally during the scans. The two scans were merged and holes were filled using Poisson
reconstruction in Meshlab (meshlab.org). A total of 93 body landmarks were manually digitized in the scan data
and the surface landmarks were used to estimate internal joint center locations [9]. A template mesh with
18271 vertices was fit to each scan using a two-step method [10]. First, a radial-basis-function morphing
method was used to morph the template to match the scan at the landmark locations. Second, an implicit
surface method was used to move the template vertices into the surface defined by the scan data.

Lower Abdomen Contour

Because previous work showed that lap belt fit was worse for older occupants and particularly for those
with higher BMI [6, 7], the current analysis focused on the lower abdomen where the lap belt is routed. To
quantify the differences in abdomen contour associated with driver attributes, the length of a contour
extending across the lower abdomen was computed. The landmarks calculated for each scan included the
anterior-superior iliac spine (ASIS) landmarks on the bone. The point on the surface lateral to each ASIS bone
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point was computed and a contour was generated across the anterior abdomen through the omphalion (navel)
landmark. Figure 1 shows abdomen contours for a range of occupant sizes. The contour length was analyzed
relative to gender, stature, BMI, and age.

Figure 1. Abdomen contours with reconstructed pelvis estimates shown.

Ill. RESULTS

Stature had minimal effect on the abdomen contour length, but BMI had a strong effect that was similar for
men and women. Figure 2 shows that men and women with approximately 5t percentile BMI have a contour
length of about 250 mm. The contour length more than doubles to about 650 mm for drivers with a BMI of 40
kg/m?, which is approximately the 95 percentile BMI for U.S. adults. For BMI > 30 there is considerable scatter
in the data, reflecting differences in body shape. For example, young women with BMI near 30 tend to have
much smaller abdomen contour lengths than elderly men with the same BMI. Figure 3 demonstrates that age
has a smaller effect than BMI, but at age 80 the contour length is approximately 70 mm larger than at age 20 for
people with BMI less than 30. Higher-BMI drivers do not show a trend with age. Figure 4 shows this trend with
BMI on the horizontal axis, demonstrating that the effect of BMI is much larger than that of age.

A linear regression analysis was conducted with gender, stature, age, and BMI and their two-way interactions
as potential predictors. Only the main effects of age and BMI were significant (p<0.01):

Contour Length (mm) = -149 + 1.27*Age + 20.5 BMI, R%adj = 0.75, RMSE = 65.2 mm (1)
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Figure 2. Abdomen contour length for men (+) and women (o) as a function of BMI.
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Figure 3. Abdomen contour length for BMI < 30 (+) and BMI >30 (o) as a function of age.
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Figure 4. Abdomen contour length for age < 40 years (+) and age >40 years (0) as a function of BMI.

IV. DISCUSSION

This analysis demonstrated that increased age and BMI are associated with a larger lower abdomen contour
across the front of the pelvis. Even with ideal belt routing at the thigh/abdomen junction, this greater volume of
soft tissue means that there is additional belt slack that must be taken up by a pretensioner or by occupant
translation before substantial restraint force can be applied to the pelvis.

The analysis is believed to be the first to use 3D body shape data to consider the belt interaction in this area.
However, the findings are limited by several issues. The posture measured in the scanner is similar but not
identical to any individual’s driving posture. Posture differences could change the shape of the lower abdomen.
The determination of the contour length is affected by the calculated pelvis locations. Because high BMI makes
locating the pelvis difficult [7] the uncertainty in contour length is greater for individuals with high BMI. The
actual belt placement relative to the abdomen is variable [7], so these contour lengths are probably close to a
best-case scenario for a belt placed low on the pelvis, just above the thighs. However, an individual could
choose to tighten the belt, displacing some tissue and reducing the additional belt length spanning the pelvis.
The contour chosen programmatically in this analysis might not follow the belt path. In particular, because the
contour starts at the height of the ASIS, the contour is generally flatter than an ideal belt path, which would
pass more vertically over the proximal thighs rather than more horizontally over the lower abdomen. However,
the analysis quantifies the challenge posed by protuberant lower abdomens.

Clothing can be expected to affect the belt routing. The thin shorts worn for this study minimized clothing
bulk, but elastic in the material may have changed the shape of the soft tissue. Clothing effects should be
studied further, including the effects of outer garments such as coats worn in cold weather.

Further work is needed to assess the consequences of belt routing for high-BMI individuals. Studies with
post-mortem human subjects [3] and finite-element models [11, 12] suggest that the displacement of the lap
belt path away from the bony pelvis creates adverse kinematics in frontal crashes and increases the risk of belt
loading of the abdomen and lower extremity injury due to more forceful interaction with the knee bolster.
Countermeasures might include improved belt systems and knee bolsters capable of managing greater energy.
Computational modeling of obese occupants will be aided by accurate belt routing based on laboratory and in-
vehicle measurements. The current analyses show that lower abdomen volume and contour will be a critical
determinant of belt webbing length.

V. CONCLUSIONS

Increased BMI is associated with a larger lower abdomen that can greatly increase the length of the belt path
across the front of the pelvis. Because the underlying tissue must be displaced before substantial restraint
forces can be applied to the pelvis, the extra belt webbing required to span the abdomen represents slack that



must be taken up by the pretensioner and occupant translation. For some high-BMI men, an additional 350 mm
of slack must be removed by displacing soft tissue to allow the belt to engage the pelvis.
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