Simulating Seat Back Interaction Using Realistic Body Contours

Matthew P. Reed
Jingwen Hu

Biosciences Group
Introduction

- Dimensional mismatch between a seat and sitter can cause discomfort.
- Traditional anthropometric data do not provide guidance on three-dimensional body shape.
- Surface-scanning equipment has revolutionized anthropometry by allowing rapid recording of whole-body surface shapes.
Realistic Body Shape Models

Only a few sizes and body shapes
Objectives

Develop a methodology for using a statistical body shape model to conduct automated fit assessments for vehicle seats

Initial focus: Seat back fit
Method Overview

[Diagram showing the method overview with steps including Seat Design, FE baseline mesh, FE Seat Model, and H-point position, among others.]

UMTRI
Simplified Finite-Element Seat Models

Shell element only, no real foam
Uniform thickness and material

“Old”

“New”
3D Seated External Body Contours

- Extract Scan Data
- Fit Surface Mesh
- Estimate Joint Locations
- Posturable Body Shape Model
- Regression Predictors:
 - thigh angle
 - recline
 - flexion
 - stature
 - BMI
- Principal Component Analysis
- Morph to 15 Postures
3D Anthropometry Methods: Laser Scanning

- standard anthropometry
- whole-body laser scanner
- optical landmarks
- additional landmarks with FARO Arm
- multiple standing and seated postures

Laser towers (4)
Hand-held laser scanner to augment towers
Red laser beam

VITUS XXL Scanner
3D Anthropometry Methods: Laser Scanning

- Scanning requires 12 seconds, plus an additional minute for hand scanning in some postures
- Seated postures span a wide range of recline and lumbar spine flexion
Body Shape Modeling

Whole-Body Scan Data

Handheld Scanner Data

Clean and Fit Polygon Mesh

Manual Landmark Extraction

Model Integration

Mesh with Landmarks

Fit Standardized Template

PCA+Regression Analysis

Statistical Model to Predict Body Shape from Standard Anthro or Landmark Locations

Manually Measured Body Landmarks

Standard Anthropometry (stature, body weight, etc.)
Process Overview: Scan Data

Template for Seated Analysis showing 137 Landmarks
68072 polygons, 34038 vertices

Template Fit to Data from a Scan (blue)
Process Overview: Scan Data

Scanned Mesh and Landmarks Landmark-Morphed Template Fitted Scan
Process Overview: Template Fits

Multiple subjects and postures
Surface Analysis

Output of regression model to predict seated body shape (based on 338 scans from 126 men)

- Stature 1600 mm
- Stature 1755 mm (Median US Male)
- Stature 1900 mm
- BMI 18 kg/m²
- BMI 27.3 kg/m²
- BMI 40 kg/m²
Pilot Simulation Setup

- 24 **automated** simulations for male only
- Height: 165, 175, 185 cm
- BMI: 20 & 35
- Thigh angle: same at the cushion
- Lumbar spine flexion: 5 & 15 degree
- Two seat models
- Output: seat surface deformation

[Diagram showing body initial hip location, prescribed motion, and seat H-point]
Simulation Results

Old seat
H165, BMI20, Lspine flexion 15°

New seat

Old seat
H185, BMI35, Lspine flexion 15°
Simulation Results

Lumbar Spine flexion 15 deg vs. 5 deg re “nominal”

15°
Old seat, H165, BMI20

5°

15°
New seat, H185, BMI35

5°
Simulation Results

H165, BMI20
H175, BMI20
H185, BMI20
H165, BMI35
H175, BMI35
H185, BMI35

New seat, Lumbar spine flexion 15°
Summary

• Automated methods for rapidly assembling a simulation with a large number of human body models and seat back models were developed.

• A simple prescriptive method for defining seatback interaction showed sensitivity for differentiating seat fit among seats and body shapes.
Limitations

• The method is limited by the accuracy of the positioning model, which is only pseudo-physics-based to emphasize speed over accuracy.

• The ultimate success of the method is dependent on the development of a quantitative, reliable method to predict subjective responses from the physical interaction between the sitter and seatback.
Next Steps

• Improve the human body shape model by adding more subjects and both improving and validating the posturing functionality. [Ongoing]

• Conduct a laboratory study with human volunteers to quantify the relationships between subjective fit and objective measures of seatback interaction. [Ongoing]

• Validate the FE method for simulating seatback interaction based on the framework developed in the current study. [Future Work]
UMTRI Human Models (2014)

Examples of statistical body shape models developed at UMTRI
More Detailed Human Model
Acknowledgements

This research was supported in part by Faurecia. The body shape and parametric seat modeling has been supported from many sponsors, including the U.S. Army, the National Highway Traffic Safety Administration, and the Toyota Collaborative Safety Research Center.