Development of a Methodology for Simulating Seat Back Interaction Using Realistic Body Contours

Jingwen Hu Matthew P. Reed

Biosciences Group

April 16, 2013

UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE

Introduction

- Dimensional mismatch between a seat and sitter can cause discomfort.
- Traditional anthropometric data do not provide guidance on three-dimensional body shape.
- Surface-scanning equipment has revolutionized anthropometry by allowing rapid recording of whole-body surface shapes (CAESAR project).

Limited Literature Review

Virtual Fit Evaluation

ATD Model
Human Model

Limited size and body shape

Objectives

- To introduce a methodology for using a statistical body shape model to conduct automated fit assessments for vehicle seat backrest
 - Fit vs. pressure
 - Seatback vs. seat cushion
 - Parametric model vs. single model

Method Overview

3D Seated External Body Contours

Principal Component Analysis

Erect Sitting Height (mm)

What:

Project multidimensional data into a lower-dimension space defined by independent, orthogonal vectors

Why:

- Compression: Represent most of the data variance using a smaller number of variables
- 2. Understand the primary modes of variance (size and shape in geometric data)

Radial Basis Function Morphing

• To rapidly change the baseline mesh into another geometry

Map the blue points to the red circles The grid illustrates the calculated deformation

Radial Basis Function Morphing

To generate a morphing function, we use homologous configurations of points as the source and target

Example: Use morphing to illustrate face shapes characterized by 13 landmarks

20 men

Radial Basis Function Morphing

To generate a morphing function, we use homologous configurations of points as the source and target

Example: Adult male pelvis shapes (16 landmarks)

46 men

reference

3D Seated External Body Contours

 Occupant positioning and posture by RBF morphing

3D Seated External Body Contours

•Statistical models of seated body shape predicted by *height, BMI, thigh angle, and lumbar spine flexion angle*, based on U.S. CAESAR data

Simplified Seat Models

- Shell element only, no real foam
- Uniform thickness and material

Simulation Setup

- 24 automated simulations for male only
- Height: 165, 175, 185 cm
- BMI: 20 & 35
- Thigh angle: same at the cushion
- Lumbar spine flexion: 5 & 15 degree
- Two seat models
- Output: foam deformation

Seat H-point

Simulation Results

Old seat vs. New seat

Simulation Results

Lumbar Spine flexion 15 deg vs. 5 deg

Simulation Results

Torso shape

New seat, Lumbar spine flexion 15°

Summary

- A method was developed to include posturing capability in a statistical model of torso shape.
- Automated methods for rapidly assembling a simulation with a large number of human body models and seat back models were developed.
- A simple prescriptive method for defining seatback interaction showed sensitivity for differentiating seat fit among seats and body shapes.

Limitations

- The method of body shape morphing and simulation is not validated yet.
- Joint characteristics of the human body model is not simulated.
- The ultimate success of the method is dependent on the development of a quantitative, reliable method to predict subjective responses from the physical interaction between the sitter and seatback.

Next Steps

- Improve the human body shape model by adding more subjects and both improving and validating the posturing functionality.
- Refine the human body FE model by including more hard/soft tissues and proper joint characteristics.
- Conduct a laboratory study with human volunteers to quantify the relationships between subjective fit and objective measures of seatback interaction.
- Validate the FE method for simulating seatback interaction based on the framework developed in the current study.

More Detailed Human Model

Acknowledgements

 This research was funded by Faurecia. The authors thank Samuel Baudu, Yang Cao, Michael Kellar, and Dana Lowell for their contributions to the project.

Jingwen Hu, PhD jwhu@umich.edu

Matthew Reed, PhD mreed@umich.edu

UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE