Matt Reed, Ergonomics and Safety Research

Matthew P. Reed, Ph.D.

I'm a Research Professor and Head of the Biosciences Group of the University of Michigan Transportation Research Institute. I conduct research in a variety of areas relating to anthropometry and biomechanics, including vehicle ergonomics and vehicle occupant crash protection. I'm also a Research Professor in the Center for Ergonomics in Industrial and Operations Engineering, where I am Director of the Human Motion Simulation Laboratory. The HUMOSIM Lab develops movement simulation algorithms and ergonomics analysis tools for use with commercial human modeling software.

Follow the links at the right for more information about my research and see these highlights of recent projects.

Google Scholar Profile

Scopus Public Profile (ID: 7401800235)

ORCID ID: 0000-0001-6650-0727

University of Michigan Researchers

Other affiliations:

Associate Editor, Traffic Injury Prevention

International Research Council on the Biomechanics of Injury

Update: 2016-04

The Biosciences Group had a big presence at the SAE Congress in Detroit this month. We presented research on a broad range of topics from seat shape modeling to restraint system optimization for military vehicles. Here are some highlights:

Reed, M.P. and Ebert, S.M. (2016). Evaluation of the seat index point tool for military seats. SAE Technical Paper 2016-01-0309. SAE International Journal of Commercial Vehicles. sipt

In the design of on-highway vehicles, the SAE J826 H-point machine is used globally to establish reference points and angles to define the seat position and orientation. However, the H-point machine doesn't work very well in many military vehicle seats. In this paper, we compared the performance of the ISO 5353 seat index point tool (SIPT) to the H-point machine and found that not only is it more stable, but it gives comparable results in many situations. Consequently we recommend that the U.S. Army immediately adopt the SIPT as the standard for measuring ground vehicle seats whenever the H-point machine cannot be used or is not available.

Drignei, D., Mourelatos, Z., Kosova, E., Hu, J., Reed, M.P., Rupp, J.D., Gruber, R., and Scherer, R. (2016). Uncertainty assessment in restraint system optimization for occupants of tactical vehicles. SAE Technical Paper 2016-01-0316. SAE International Journal of Materials and Manufacturing, 9: 436-443 sipt

We are in the final stages of a large-scale project developing optimized restraint systems for a Humvee-like vehicle to protect its occupants in frontal-crash and rollover events. We conducted sled testing of a variety of restraints with fully equipped soldiers, then performed a wide-ranging simulation study to identify optimal restraints, including airbags for frontal crash protection. One challenge in restraint system optimization is that the complexity of the computational models for simulating crashes means that we can't run as many physical or computational tests as we would like. This paper explores a method for estimating the uncertainy in outcomes given a small number of test results.

Hwang, E., Hallman, J., Klein, K., Rupp, J.D Reed, M.P. and Hu, J. (2016). Rapid development of diverse human body models for crash simulations through mesh morphing. SAE Technical Paper 2016-01-1491. SAE International, Warrendale, PA.

siptOur postdoc Eunjoo Hwang presented some of her work on parametric modeling of vehicle occupants. The work reported here was actually completed about 18 months ago and represented the first project we're aware of to successfully morph a high-fidelity human body model (THUMS4, in this case) to a wide range of body sizes. With leadership from Dr. Jingwen Hu, we have extended this broadly, generating over 100 anthropometricallly distinct versions of THUMS4.


Jones, M.L., Ebert, S.M., and Reed, M.P. (2016). A Pilot Study of Occupant Accommodation and seat belt fit for law enforcement officers. SAE Technical Paper 2016-01-1504. SAE International, Warrendale, PA. sipt

My colleague Dr. Monica Jones presented some interesting pilot work she conducted assessing the geometric fit of law-enforcement officers (LEO) in vehicles with a focus on seats and restraint systems. Car crashes are a leading cause of death for LEO in the U.S., with more officers killed in vehicles than by guns. Some officers report that they do not wear their safety belts because they do not fit well when they're wearing their duty belts, and lower-back and other musculoskeletal ailments due to poor vehicle ergonomics are a leading cause of lost work time for officers. In this study, Monica used 3D laser scanning to document the mismatch between LEO and their seats and vehicles. More work is needed in this area to improve vehicle designs for law enforcement.

Park, J., Ebert, S.M., Kim, K.H., Jones, M.L., Park, B-K, and Reed, M.P. (2016). Development of an automatic seat-dimension extraction system. SAE Technical Paper 2016-01-1429. SAE International, Warrendale, PA.

sipt Dr. Jangwoon Park, a post-doc in our lab, developed a novel automated software system for extracting seat dimensions. In the auto industry, seat benchmarking is a slow process. Extracting the dimensions defined by SAE J2732 can take hours. Dr. Park's system can compute dimensions in minutes from a 3D scan of the seat, assuming H-point data are available. We are exploring the potential of combining this system with the statistical shape modeling methodology described below to create a new, quantitative system for evaluating vehicle seating.

Kim, K.H., Ebert, S.M., and Reed, M.P. (2016). Statistical modeling of automotive seat shapes. SAE Technical Paper 2016-01-1436. SAE International, Warrendale, PA.

seat shape parameterization

My colleague Dr. Han Kim developed an interesting approach to analyzing seat shapes. Observing the organic contours typical of modern auto seats, he applied the same methods we've been using in recent years for modeling human body shape. He developed a semi-automated method for fitting a template to each seat so that the contours are amenable to a statistical analysis using principal component analysis and regression. The resulting parameterization can be used for a host of interesting applications, including seat shape clustering, interpolating among seats, finding the "nearest neighbor" of a seat, and designing completely new seat shapes. The potential of this new tool will begin to be realized after we are able to add perhaps 100 more seats to the database.

Update: 2016-02

rear seat safety

Thanks to the great work of my colleague Dr. Daniel Park, we have launched a beta version of our new web portal, HumanShape will provide interactive, online access to our many statistical body shape models. Already, this is the only online source of data on child body shape and seated adults. Much more will be coming in the next few months. Currently, the site hosts three child anthropometry models and one adult model. Users can input the overall body dimensions, such as stature and body weight, and download an STL file along with a range of body landmarks. We welcome feedback and suggestions on how we can make this tool useful for a wide range of applications.

Update: 2016-01

rear seat safety

Anthropometric data on children are scarce, and anthropometric data on toddlers and infants are even more rare. My colleagues and I just wrapped up a preliminary analysis of an unprecedented dataset of 3D whole-body laser scans of toddlers ages 12 to 36 months. Using methods we previously applied to children ages 3 to 11, we developed a statistical body shape model parameterized on torso length (erect sitting height for children who could assume that posture, recumbent length for the younger ones) and body mass. The resulting model was used to generate a set of boundary manikins based on increments of body weight. These tools will be useful for child restraint design, in particular for ensuring that harness strap heights accommodate nearly all children within the weight ranges by which restraints are specified.

Update: 2015-12

rear seat safety

My colleagues in the Biosciences Group and I are heavily involved with other researchers across the country in a program to develop a new anthropomorphic test device (ATD or dummy) for underbody blast testing. The Army currently uses the Hybrid-III ATD, which was developed for frontal crash testing in automobiles. Our group is conducting vertical impact testing using our droptower to develop the basic biomechanical performance targets for the ATD. We have also had primary responsibility for developing the anthropometric specifications for the ATD. The image to the right is an early prototype concept originally developed by Humanetics and brought to fruition by DTS. Among our contributions to this design are the design of the overall body shape and joint locations, head contour, pelvis shape, design posture, and foot contour. This is the first ATD in which the anthropometric specification is based on a statistical analysis of whole-body shape data. It follows a long tradition at UMTRI of the development of anthropomorphic human surrogates for safety applications.

Update: 2015-11

rear seat safety

My colleagues and I attended the Stapp Car Crash Conference in New Orleans this month. During the sessions, we received an award for the best paper at the previous years' conference. Dr. Lauren Zaseck was the lead author on the paper, which was the first to look closely at the side-impact response and tolerance of older and female PMHS. Because these populations are greater risk of serious injury, test procedures, ATDs, and injury criteria need to take their needs into account.

Update: 2015-10

rear seat safety

AutoBeatDaily has a nice piece on recent work we did with ZF TRW aimed at improving occupant protection in rear seats. My colleagues Jingwen Hu, Steve Peterson and I were interviewed about the collaboration between ZF TRW and UMTRI on this NHTSA-funded project. The overall goal of the effort was to develop optimized restraint systems for occupants of various sizes in second-row, outboard seating positions. The best-performing system included a unique, self-configuring airbag design that provides good head protection for occupants with a wide range of body size. Future work will consider the effects of alternative and adaptable belt and seat geometries.

Update: 2015-09

soldier safety

The BBC did a great piece on our work over the past few years to improve accommodation and safety for soldiers in vehicles. This work was funded by TARDEC through the Automotive Research Center. This effort has involved a large number of U-M and TARDEC collaborators. The dataset from the Seated Soldier Study is now the primary information the Army uses in determining the posture, shape, and space claim for soldiers in vehicles. This work for the Army is part of wide ranging research program in the Biosciences group to quantify how people sit in vehicles, as well as how they get in and out and move around in them. We have pioneered the use of 3D human surface measurement and modeling in this domain and are increasingly using markerless technology, such as Microsoft Kinect, to measure motion as well as posture.

Update: 2015-09

lower abdomen contour

I presented a short communication at the IRCOBI annual conference in Lyon, France. A substantial part of our current research focuses on measuring and modeling body shape. Many of our applications relate to automobile crash safety. Using whole body scan data, we analyzed the contour of the lower abdomen in the area where the lap portion of a three-point belt is routed. We found that the length of this contour is strongly associated with body mass index (BMI), which is a useful surrogate for adiposity. Age had a small effect, but gender was unimportant. This research is consistent with our previously published work showing that high BMI is associated with relatively poor lap belt fit. That is, high-BMI individuals tend to place the belt higher and more forward relative to the pelvis. The current study confirms that the effect can be largely accounted for by lower abdomen protrusion, a finding that is not unexpected, but is now quantitatively demonstrated. We have previously published human simulation studies demonstrating the consequences of high BMI for drivers, which are consistent with our analysis of field crash data. We are currently underway with studies to evaluate the effectiveness of advanced belt systems and other countermeasures to improve restraint performance for the 1/3 of U.S. adults who are obese.

Update: 2015-08

landmarks on scan

Locating body surface landmarks on whole-body scan data is usually a time-consuming manual process. Manual digitizing is the "gold standard", producing higher accuracy and precision than automated methods, but for some applications a rapid, fully automated procedure is desireable, even if accuracy is lower. I presented a brief paper at the IEA conference in Melbourne, Australia, this month examining the precision of a purely statistical method for predicting landmark and joint locations. The method is based on a statistical body shape model that incorporates landmarks and joints. The results showed that the predictions for torso joints are surprisingly precise when scan data is fitted using a rapid optimization process. The most important near-term application is the estimation of a kinematic linkage for avatars created from Kinect scan data.

Update: 2015-08


The Biosciences Group is conducting a broad range of research for the U.S. Army, including a large-scale study focused on improving protection for soldiers in vehicle crash and rollover events. At the 2015 GVSETS meeting, my colleague Dr. Jingwen Hu presented an overview of outcomes from a sled-test series comparing the performance of alternative belt restraint systems in frontal impact. This is the first study to examine the influence of restraint system configuration across a range of body size, taking into account the effects of body armor and body borne gear. This work was recognized with a "best paper" award, one of only 2 out of 53 peer-reviewed papers to receive this honor.

Update: 2015-07


My colleagues Dr. Daniel Park and Dr. Jangwoon Park presented some recent work at the Applied Human Factors and Ergonomics (AHFE) annual meeting in Las Vegas. Dr. J. Park presented a new method for estimating pelvis position and orientation in automobile seats. This perennially challenging problem is more difficult in individuals with high BMI, and the new methods enable adjustments to account for larger flesh margins. Dr. Daniel Park presented methods for mapping a statistical body shape model generated on one manikin mesh to another mesh. This method allows us to apply our model outcomes much more broadly. In particular, we can rapidly generate a CATIA manikin automatically from Kinect scan data.

Update: 2015-06


Analyses of crash data in the field have shown that obese occupants are at higher risk in frontal crashes than occupants of normal weight. Improving protection for obese occupants requires an understanding of how these occupants interact with restraint systems. At the 2015 ESV Conference in Gothenberg, Sweden, my colleague Jingwen Hu presented a simulation study aimed at understanding how obese occupants interact with belts in frontal impact. This work is based on a new paradigm in parametric human modeling that allows rapid, accurate morphing of complex finite element models to represent individuals with a wide range of size and shape. This study validated a set of obese occupant models using post-mortem human subject data from testing conducted at the University of Virginia.

Wang et al. (2015), A Simulation Study on the Efficacy of Advanced Belt Restraints to Mitigate the Effects of Obesity for Rear-Seat Occupant Protection in Frontal Crashes Traffic Injury Prevention, 16:S75-S83, doi:10.1080/15389588.2015.1010722

Update: 2015-05


Daniel Park and I have just published the first parametric body shape model for children. The model is based on laser scans of 137 children ages 3-11 in a standing posture. We used a custom template fitting approach followed by standard PCA+regression methods to create a statistical body shape model parameterized by stature, BMI, and the ratio of sitting height to stature. This model is now available online at As far as we know, this is the first data-based body shape model to be made available for free online. The online versions allows for downloads of a mesh surface (STL) file along with body landmark and joint locations and a set of standard anthropometric dimensions. We expect to be putting many more models online in the next year as we published more of our body shape studies. Please contact me if you have questions about using the model in your research.

Park and Reed (2015), "Parametric Body Shape Model of Standing Children Ages 3 to 11 Years." Ergonomics, doi:10.1080/00140139.2015.1033480

Update: 2015-04


The UMTRI Biosciences Group was featured in an article in Mechanical Engineering, the monthly magazine of ASME. The work of my colleague Dr. Jingwen Hu and his students on parametric human body modeling for restraint system optimization was highlighted. The article touches on a range of activities now underway in our greoup, including whole-body scanning and body shape modeling, finite-element modeling of highly detailed human anatomy, and restraint system optimization.

Update: 2015-02

Soldier Scan

My collaborator Matt Parkinson, his student Brian Pagano, and I have just published the first updated assessment of U.S. child anthroometry in a generation. During the 1970s, UMTRI researchers led by Jerry Snyder conducted two large-scale studies of child body dimensions, measuring thousands of children across the country. Since that time, children in the U.S. at each age have gotten considerably heavier, with greater differences at older ages. Dr. Parkinson and I have previously published statistical methods for adjusting a detailed dataset to match a population for which only overall body dimensions, such as stature and weight, are known. We applied a similar methodology to update the detailed dimensions in the Snyder 1977 study based on recent stature and body weight data from the U.S. National Health and Nutrition Examination Survey. This update will be valuable for anyone who creates products or environments for children in the U.S. including child restraints, furniture, and clothing. Ultimately, a new, comprehensive study of U.S. child anthropometry is needed. Contact me for an article reprint.

Update: 2014-12

Soldier Scan

The final report for the Seated Soldier Study conducted by UMTRI for the US Army TARDEC is now available. The report describes the methods and results from detailed measurements of 315 soldiers at three Army posts. A detailed posture analysis was conducted for both driver and squad seating conditions. Posture-prediction models based on UMTRI's Cascade methodology are presented for both environments. The models take into account the effects of body armor and body borne gear. Whole-body laser scanning was conducted to characterize body shape with and without PPE and gear. Analysis of this rich dataset will be underway for some time. Already, we are working on accommodation models for driver and squad condition, new vehicle packaging paradigms, and methods for optimizing seat design based on these findings and data. Three-dimensional body shape modeling using a subset of data from the Seated Soldier Study was used to develop anthropometric specifications for the midsize-male WIAMan ATD. If you have additional ideas on how these data could be used to improve the design of vehicles, seats, and protective equipment for soldiers, please contact me.

Update: 2014-10

Kinect Jack

Building on recent work on body shape modeling and using Kinect as a body scanner, I presented a paper at the 2014 HFES conference in Chicago on work with Siemens on generating subject-specific Jack models. In May, we presented work at the 2014 DHM conference on the implementation in Jack of standing male and female statistical body shape models (SBSM). For some applications, it is useful to create a Jack manikin of a particular individual, for example, a subject in a laboratory study. Normally we would take a set of a dozen or so standard anthropometric measures and type them into Jack to scale a custom figure. That figure will have roughly the right size, but often the shape is quite unlike the individual. In the current work, we find the set of principal component scores in our male or female shape model that produces the body shape most closely matching the data from a snapshot taken with the Kinect sensor.We then pass those PC scores to Jack to obtain a figure with very similar size and shape. The paper shows quantitative comparisons for four women scanned with the Kinect system. In future work, we'll apply the new Kinect 2 sensor, which promises greater accuracy, and relax the current restrictions on scanning posture.

Update: 2014-09

Knee Location

I presented a short communication at the 2014 IRCOBI conference in Berlin this month addressing driver knee locations. In modern vehicles, the underside of the instrument panel is designed to absorb energy in frontal impacts by exerting controlled force on the driver's knees. The knee bolster is an important component of the restraint system, sharing load with the steering wheel airbag and three-point belt. In recent work, we showed that the lap portion of the belt fits considerably more loosely for most people than for crash dummies. A loose belt means that the occupant will translate further forward before belt force builds up, potentially changing the load sharing between the belt and knee bolster. The starting knee location at the time of the crash is one critical determinant of load sharing. We used data from 100 men and women with a wide range of body size who sat in a laboratory vehicle mockup in 9 different vehicle configurations spanning the range from sports cars to SUVs. We used regression analysis to model the location of the forward-most margin of the patella (kneecap) as a function of vehicle and driver variables. As expected, the vehicle configuration had a strong effect, but we also found that taller drivers' knees are more rearward, on average. These results are useful for understanding the distribution of drivers' knee locations in any particular vehicle and could be used to conduct parametric studies of load sharing for a range of frontal impact conditions.

Update: 2014-08

Seat Fitting Results

I presented an update of our virtual seat fit assessment work at the 8th Annual Automotive Seating Innovators Summit in Detroit. This collaboration builds on work my colleague Jingwen Hu presented at the SAE Congress in 2013. The critical insight behind this work is that rigorous dimensional assessments of seats requires evaluation with hundreds or even thousands of people. Since it's not remotely practical to do that with physical prototypes, virtual seat fit evaluations with synthesized populations of sitters is the only way to conduct an accurate dimensional analysis considering all geometric aspects of the seat sitter interaction, rather than just a few standard anthropometric dimensions. The previous work used 3D body shape models based on CAESAR. The work now underway will apply body shape models based on UMTRI data gathered in a number of studies.

Update: 2014-05

Kinect Fitting Results

The Automotive Research Center at the University of Michigan held its Annual Review this month, celebrating 20 years of research in modeling and simulation of ground vehicles. I presented an overview of some of our activities in Thrust Area II, Human-Centered Modeling in Simulation. Among other projects, we are studying the effects of body armor and body borne gear on seated reach difficulty and capability; developing new statistical tools for vehicle interior layout based on soldier posture data; and conducting sled tests and finite-element simulations to optimize belt restraints and airbags for tactical vehicles.

Update: 2014-05

Kinect Fitting Results

My colleague Daniel Park presented a paper at the 3rd International Digital Human Modeling Symposium on our work with using Kinect sensors for body scanning.

Our technique uses only two Kinect sensors and requires only about 12 seconds to obtain a subject-specific avatar. The key innovation is a rapid application of a statistical body shape model based on body scan data. The method is demonstrated using children between ages 3 and 11.

Update: 2014-05

Kinect Fitting Results

Prof. Matt Parkinson of The Pennsylvania State University presented some joint work on human modeling at the 3rd International Digital Human Modeling Symposium.

The paper reports a collaboration with Siemens to implement a statistical body shape model based on scan data in the Jack human modeling software. To our knowledge, this is the first time a widely used commercial ergonomics tool has included a high-resolution body shape model based on a statistical analysis of scan data.

This paper won an Applied Research Award at the conference.

Update: 2014-04

West Point Lecture

I was fortunate to have the opportunity to present an overview of our research on tactical vehicle occupant protection at the U.S. Military Academy at West Point. LTC Bruce Floersheim, Director of the Center for Innovation and Engineering, hosted my visit.

The research I presented was funded by TARDEC through the Automotive Research Center at the University of Michigan. The ARC is a U.S. Army Center of Excellence in modeling and simulation of ground vehicles.

Update: 2014-01

Seated Soldier Final Presentation

I gave a briefing at the U.S. Army Tank-Automotive Research, Development, and Engineering Center this month on our Seated Soldier Study. In close collaboration with the Army, and with assistance from Anthrotech, we measured the seated postures and body shapes of over 300 soldiers. This study is the first we are aware of to document in detail the effects of body armor and body-borne gear on supported seated postures. Major outcomes of this work include new posture-prediction models for drivers and squad members in military vehicles. In addition to posture measurements, over 8200 whole-body surface scans were obtained using a laser scanner, documenting male and female body shape in up to 20 postures. Along with our related work on civilian vehicle occupants, this study provides the first large-scale data on body shapes in supported seated postures. We have used the data to generate statistical models of body shape for use in a wide range of engineering applications.

The Seated Soldier Study was funded by TARDEC through the Automotive Research Center at the University of Michigan. The ARC is a U.S. Army Center of Excellence in modeling and simulation of ground vehicles.




©2016 Matthew P. Reed and The University of Michigan