Matt Reed, Ergonomics and Safety Research

Matthew P. Reed, Ph.D.

I'm a Research Professor and Head of the Biosciences Group of the University of Michigan Transportation Research Institute. I conduct research in a variety of areas relating to anthropometry and biomechanics, including vehicle ergonomics and vehicle occupant crash protection. I'm also a Research Professor in the Center for Ergonomics in Industrial and Operations Engineering, where I am Director of the Human Motion Simulation Laboratory. The HUMOSIM Lab develops movement simulation algorithms and ergonomics analysis tools for use with commercial human modeling software.

Follow the links at the right for more information about my research and see these highlights of recent projects.

Google Scholar Profile

Scopus Public Profile (ID: 7401800235)

ORCID ID: 0000-0001-6650-0727

University of Michigan Researchers

We're Hiring!

UMTRI is in growth mode -- we're looking to add faculty and post-docs across a wide range of disciplines. In my group, we're searching for assistant/associate research scientists and post-docs in injury biomechanics. Contact me if you have questions about this opportunity, or apply online.

Update: 2014-05

Kinect Fitting Results

The Automotive Research Center at the University of Michigan held its Annual Review this month, celebrating 20 years of research in modeling and simulation of ground vehicles. I presented an overview of some of our activities in Thrust Area II, Human-Centered Modeling in Simulation. Among other projects, we are studying the effects of body armor and body borne gear on seated reach difficulty and capability; developing new statistical tools for vehicle interior layout based on soldier posture data; and conducting sled tests and finite-element simulations to optimize belt restraints and airbags for tactical vehicles.

Update: 2014-05

Kinect Fitting Results

My colleague Daniel Park presented a paper at the 3rd International Digital Human Modeling Symposium on our work with using Kinect sensors for body scanning.

Our technique uses only two Kinect sensors and requires only about 12 seconds to obtain a subject-specific avatar. The key innovation is a rapid application of a statistical body shape model based on body scan data. The method is demonstrated using children between ages 3 and 11.

Update: 2014-05

Kinect Fitting Results

Prof. Matt Parkinson of The Pennsylvania State University presented some joint work on human modeling at the 3rd International Digital Human Modeling Symposium.

The paper reports a collaboration with Siemens to implement a statistical body shape model based on scan data in the Jack human modeling software. To our knowledge, this is the first time a widely used commercial ergonomics tool has included a high-resolution body shape model based on a statistical analysis of scan data.

This paper won an Applied Research Award at the conference.

Update: 2014-04

West Point Lecture

I was fortunate to have the opportunity to present an overview of our research research on tactical vehicle occupant protection at the U.S. Military Academy at West Point. LTC Bruce Floersheim, Director of the Center for Innovation and Engineering, hosted my visit.

The research I presented was funded by TARDEC through the Automotive Research Center at the University of Michigan. The ARC is a U.S. Army Center of Excellence in modeling and simulation of ground vehicles.

Update: 2014-01

Seated Soldier Final Presentation

I gave a briefing at the U.S. Army Tank-Automotive Research, Development, and Engineering Center this month on our Seated Soldier Study. In close collaboration with the Army, and with assistance from Anthrotech, we measured the seated postures and body shapes of over 300 soldiers. This study is the first we are aware of to document in detail the effects of body armor and body-borne gear on supported seated postures. Major outcomes of this work include new posture-prediction models for drivers and squad members in military vehicles. In addition to posture measurements, over 8200 whole-body surface scans were obtained using a laser scanner, documenting male and female body shape in up to 20 postures. Along with our related work on civilian vehicle occupants, this study provides the first large-scale data on body shapes in supported seated postures. We have used the data to generate statistical models of body shape for use in a wide range of engineering applications.

The Seated Soldier Study was funded by TARDEC through the Automotive Research Center at the University of Michigan. The ARC is a U.S. Army Center of Excellence in modeling and simulation of ground vehicles.

Presentation

Update: 2013-11

Stapp Conference Talk

I gave a talk at the Stapp Car Crash Conference in Orlando this month. My paper examined the effects of driver characteristics on seat belt fit. We'd previously shown that obesity significantly worsens lap belt fit in passenger conditions. The latest study, based on data from 97 men and women with a wide range of age and body size, show that many drivers place their seat belts farther from their pelves than they should. Individuals with higher BMI had worse belt fit, on average. The results suggest a need to educate drivers about proper belt placement, but also indicate that improved belt designs might help. This research was funded by the Toyota Collaborative Safety Research Center.

Paper

Update: 2013-10

SAFER Symposium

I gave a short talk at the IRCOBI conference in Gothenburg Sweden last month. My paper focused on our work measuring and modeling seated occupant body shapes for parametric human body modeling. We are continuing to improve the depth and breadth of our human modeling capability. We have a rich dataset that includes children ages 2 and up, young adults, elderly, and soldiers.

Paper

Update: 2013-09

SAFER Symposium

I participated in an informative symposium hosted by SAFER in Gothenburg Sweden. With a focus on occupant protection for children 4-12 years old, the symposium noted the considerable progress made in the past decade while outlining the remaining challenges. The presentations are available at this website.

Presentations

Digital Human Modeling Symposium June 11-13, 2013

My colleague Matt Parkinson and I hosted a symposium on digital human modeling in Ann Arbor. We had over 140 participants from 12 countries with poster and podium sessions over three days. The program, proceedings, and other info are available at dhm2013.org. One highlight was a twitter scavenger hunt featuring our brand-new human modeling avatar, Diablos.

Digital Human Modeling Symposium in Ann Arbor, June 11-13, 2013

 

Update: 2013-06

Soldier Scanning

My colleagues and I presented an update on our work on soldier posture, position, and body shape at the 19th annual meeting of the Automotive Research Center at the University of Michigan. The overall goal of this work is to develop modeling and simulation tools that will lead to safer and more efficient vehicle designs.

Presentation

 

 

 

Update: 2013-04

Steering Wheel Position

My colleagues and I published several papers at the SAE Congress this week. Driver preference for fore-aft steering wheel position has not previously been addressed directly in the SAE literature. We analyzed data from a laboratory study to create a logistic regression model predicting subjective response as a function of H30, L6, and driver stature. The results compare favorably to a large set of vehicle benchmarking data.

Presentation

Seat Interaction Simulation

 

 

My colleague Jingwen Hu developed a new framework for conducting virtual seat fit testing using a parametric human body model. This work differs from previous simulation studies of human/seat interaction in using a human body model that can represent a large range of male and female body shapes and postures. Our ongoing body-shape modeling work includes the development of new, whole-body paramtric shape and posture models based on a wider range of postures than are found in the CAESAR database we used for this study.

Presentation

Seat Interaction Simulation

We have measured the interior geometry of dozens of vehicles over the past few years for a wide range of safety and ergonomics applications. One important finding for safety is that the seat belt anchorage locations in second-row, outboard seats vary widely, with the lab belt anchorages spanning essentially the entire legal range. ATD and simulator studies show that the range of belt fit we document in our current paper can have important safety implications.

Presentation

Update: 2013-02

WIAMan ANthro

We've just completed development of anthropometric specifications for the Army's new WIAMan blast dummy. The new anthropomorphic test device (ATD) will lead to the development of safer vehicles, seats, and interiors. This work is an outgrowth of our Seated Soldier Study.

The U.S. Army's TARDEC organization recently featured our work in an internal publication. The data from this study will have broad applicability in the development of road vehicles, not just military vehicles. This study is the first to gather and model data on whole-body shape from a large, diverse sample of people in supported seated postures. Consistency in study protocol will allow the data from the 300 soldiers measured in this project to be merged with data from 200 adults measured in another current project.

Accelerate Modeling

Recent Updates

 

 

©2014 Matthew P. Reed and The University of Michigan